2013 ACCF/AHA Guideline for the Management of Heart Failure: Executive Summary

A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines

Developed in Collaboration With the American College of Chest Physicians, Heart Rhythm Society, and International Society for Heart and Lung Transplantation

Endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation

WRITING COMMITTEE MEMBERS

Clyde W. Yancy, MD, MSc, FACC, FAHA, Chair†‡; Mariell Jessup, MD, FACC, FAHA, Vice Chair*†; Biykem Bozkurt, MD, PhD, FACC, FAHA†; Javed Butler, MBBS, FACC, FAHA*†; Donald E. Casey, Jr, MD, MPH, MBA, FACP, FAHA§; Mark H. Drazner, MD, MSc, FACC, FAHA*†; Gregg C. Fonarow, MD, FACC, FAHA*†; Stephen A. Geraci, MD, FACC, FAHA, FCCP‖; Tamara Horwich, MD, FACC‡; James L. Januzzi, MD, FACC*†; Maryl R. Johnson, MD, FACC, FAHA¶; Edward K. Kasper, MD, FACC, FAHA†; Wayne C. Levy, MD, FACC*†; Frederick A. Masoudi, MD, MSPH, FACC, FAHA†#; Patrick E. McBride, MD, MPH, FACC**; John J.V. McMurray, MD, FACC*†; Judith E. Mitchell, MD, FACC, FAHA†; Pamela N. Peterson, MD, MSPH, FACC, FAHA†; Barbara Riegel, DNSc, RN, FAHA†; Flora Sam, MD, FACC, FAHA†; Lynne W. Stevenson, MD, FACC*†; W.H. Wilson Tang, MD, FACC*†; Emily J. Tsai, MD, FACC†; Bruce L. Wilkoff, MD, FACC, FHRS*††

*Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry and other entities may apply; see Appendix 1 for recusal information.
†ACCF/AHA representative.
‡ACCF/AHA Task Force on Practice Guidelines liaison.
§American College of Physicians representative.
¶American College of Chest Physicians representative.
†International Society for Heart and Lung Transplantation representative.
#ACCF/AHA Task Force on Performance Measures liaison.
**American Academy of Family Physicians representative.
††Heart Rhythm Society representative.
‡‡Former Task Force member during this writing effort.

Full-text guideline available at: http://circ.ahajournals.org/lookup/doi/10.1161/CIR.0b013e31829e8776.
This document was approved by the American College of Cardiology Foundation Board of Trustees and the American Heart Association Science Advisory and Coordinating Committee in May 2013.

The online-only Data Supplement is available with this article at http://circ.ahajournals.org/lookup/suppl/doi:10.1161/CIR.0b013e31829e8807/-/DC1.
The online-only Comprehensive Relationships Table is available with this article at http://circ.ahajournals.org/lookup/suppl/doi:10.1161/CIR.0b013e31829e8807/-/DC2.

This article has been copublished in the Journal of the American College of Cardiology.

Copies: This document is available on the World Wide Web sites of the American College of Cardiology (www.cardiosource.org) and the American Heart Association (my.americanheart.org). A copy of the document is available at http://my.americanheart.org/statements by selecting either the “By Topic” link or the “By Publication Date” link. To purchase additional reprints, call 843-216-2533 or e-mail kelle.ramsay@wolterskluwer.com.
Expert peer review of AHA Scientific Statements is conducted by the AHA Office of Science Operations. For more on AHA statements and guidelines development, visit http://my.americanheart.org/statements and select the “Policies and Development” link.
Permissions: Multiple copies, modification, alteration, enhancement, and/or distribution of this document are not permitted without the express permission of the American Heart Association. Instructions for obtaining permission are located at http://www.heart.org/HEARTORG/General/Copyright-Permission-Guidelines_UCM_300404_Article.jsp. A link to the “Copyright Permissions Request Form” appears on the right side of the page.
(Circulation. 2013;128:1810–1852.)
© 2013 by the American College of Cardiology Foundation and the American Heart Association, Inc.

Circulation is available at http://circ.ahajournals.org
DOI: 10.1161/CIR.0b013e31829e8807

1810
ACCF/AHA TASK FORCE MEMBERS

Jeffrey L. Anderson, MD, FACC, FAHA, Chair;
Alicé K. Jacobs, MD, FACC, FAHA, Immediate Past Chair‡‡;
Jonathan L. Halperin, MD, FACC, FAHA, Chair-Elect; Nancy M. Albert, PhD, CCNS, CCRN, FAHA;
Biykem Bozkurt, MD, PhD, FACC, FAHA; Ralph G. Brindis, MD, MPH, MACC;
Mark A. Creager, MD, FACC, FAHA‡‡; Lesley H. Curtis, PhD; David DeMets, PhD;
Robert A. Guyton, MD, FACC; Judith S. Hochman, MD, FACC, FAHA; Richard J. Kovacs, MD, FACC, FAHA;
Frederick G. Kushner, MD, FACC, FAHA‡‡; E. Magnus Ohman, MD, FACC;
Susan J. Pressler, PhD, RN, FAAN, FAHA; Frank W. Sellke, MD, FACC, FAHA;
Win-Kuang Shen, MD, FACC, FAHA; William G. Stevenson, MD, FACC, FAHA‡‡;
Clyde W. Yancy, MD, MSc, FACC, FAHA‡‡

Table of Contents

Preamble .. 1811
1. Introduction 1814
 1.1. Methodology and Evidence Review 1814
 1.2. Organization of the Writing Committee 1814
 1.3. Document Review and Approval 1814
 1.4. Scope of This Guideline With Reference to Other Relevant Guidelines or Statements 1814
2. Definition of HF 1816
3. HF Classifications 1820
4. Epidemiology 1820
5. Initial and Serial Evaluation of the HF Patient: Recommendations 1820
 5.1. Clinical Evaluation 1821
 5.1.1. History and Physical Examination 1821
 5.1.2. Risk Scoring 1821
 5.2. Diagnostic Tests 1821
 5.3. Biomarkers 1821
 5.4. Noninvasive Cardiac Imaging 1821
 5.5. Invasive Evaluation 1821
6. Treatment of Stages A to D: Recommendations 1820
 6.1. Stage A 1820
 6.2. Stage B 1821
 6.3. Stage C 1821
 6.3.1. Nonpharmacological Interventions 1821
 6.3.2. Pharmacological Treatment for Stage C HFrEF 1821
 6.3.3. Pharmacological Treatment for Stage C HFrEF 1825
 6.3.4. Device Therapy for Stage C HFrEF 1829
 6.4. Stage D 1829
 6.4.1. Water Restriction 1829
 6.4.2. Inotropic Support 1830
 6.4.3. Mechanical Circulatory Support 1830
 6.4.4. Cardiac Transplantation 1830
7. The Hospitalized Patient: Recommendations 1830
 7.1. Precipitating Causes of Decompensated HF 1831
 7.2. Maintenance of GDMT During Hospitalization 1831
 7.3. Diuretics in Hospitalized Patients 1832
 7.4. Renal Replacement Therapy—Ultrafiltration 1832
 7.5. Parenteral Therapy in Hospitalized HF 1833
 7.6. Venous Thromboembolism Prophylaxis in Hospitalized Patients 1833
 7.7. Arginine Vasopressin Antagonists 1833
 7.8. Inpatient and Transitions of Care 1833
8. Important Comorbidities in HF 1834
9. Surgical/Percutaneous/Transcatheter Interventional Treatments of HF: Recommendations 1834
10. Coordinating Care for Patients With Chronic HF: Recommendations 1835
11. Quality Metrics/Performance Measures: Recommendations 1835
12. Evidence Gaps and Future Research Directions 1835
References .. 1837
Appendix 1. Author Relationships With Industry and Other Entities (Relevant) 1846
Appendix 2. Reviewer Relationships With Industry and Other Entities (Relevant) 1849

Preamble

The medical profession should play a central role in evaluating the evidence related to drugs, devices, and procedures for the detection, management, and prevention of disease. When properly applied, expert analysis of available data on the benefits and risks of these therapies and procedures can improve the quality of care, optimize patient outcomes, and favorably affect costs by focusing resources on the most effective strategies. An organized and directed approach to a thorough review of evidence has resulted in the production of clinical practice guidelines that assist clinicians in selecting the best management strategy for an individual patient. Moreover, clinical practice guidelines can provide a foundation for other applications, such as performance measures, appropriate use criteria, and both quality improvement and clinical decision support tools.

The American College of Cardiology Foundation (ACCF) and the American Heart Association (AHA) have jointly produced guidelines in the area of cardiovascular disease since 1980. The ACCF/AHA Task Force on Practice Guidelines (Task Force), charged with developing, updating, and revising practice guidelines for cardiovascular diseases and procedures, directs and oversees this effort. Writing committees are charged with regularly reviewing and evaluating all available evidence to develop balanced, patient-centric recommendations for clinical practice.

Experts in the subject under consideration are selected by the ACCF and AHA to examine subject-specific data and write guidelines in partnership with representatives from other medical organizations and specialty groups. Writing committees are asked to perform a literature review; weigh the strength of evidence for or against particular tests, treatments,
or procedures; and include estimates of expected outcomes where such data exist. Patient-specific modifiers, comorbidities, and issues of patient preference that may influence the choice of tests or therapies are considered. When available, information from studies on cost is considered, but data on efficacy and outcomes constitute the primary basis for the recommendations contained herein.

In analyzing the data and developing recommendations and supporting text, the writing committee uses evidence-based methodologies developed by the Task Force. The Class of Recommendation (COR) is an estimate of the size of the treatment effect considering risks versus benefits in addition to evidence and/or agreement that a given treatment or procedure is or is not useful/effective or in some situations may cause harm. The Level of Evidence (LOE) is an estimate of the certainty or precision of the treatment effect. The writing committee reviews and ranks evidence supporting each recommendation with the weight of evidence ranked as LOE A, B, or C according to specific definitions that are included in Table 1. Studies are identified as observational, retrospective, prospective, or randomized where appropriate. For certain conditions for which inadequate data are available, recommendations are based on expert consensus and clinical experience and are ranked as LOE C. When recommendations at LOE C are supported by historical clinical data, appropriate references (including clinical reviews) are cited if available. For issues

Table 1. Applying Classification of Recommendation and Level of Evidence

<table>
<thead>
<tr>
<th>SIZE OF TREATMENT EFFECT</th>
<th>LEVEL A</th>
<th>LEVEL B</th>
<th>LEVEL C</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLASS I Benefit >> Risk Procedure/Treatment SHOULD be performed/administered</td>
<td>Recommendation that procedure or treatment is useful/effective</td>
<td>Recommendation that procedure or treatment is useful/effective</td>
<td>Recommendation that procedure or treatment is useful/effective</td>
</tr>
<tr>
<td>CLASS IIa Benefit >> Risk Additional studies with focused objectives needed IT IS REASONABLE to perform procedure/administer treatment</td>
<td>Recommendation in favor of treatment or procedure being useful/effective</td>
<td>Recommendation in favor of treatment or procedure being useful/effective</td>
<td>Recommendation in favor of treatment or procedure being useful/effective</td>
</tr>
<tr>
<td>CLASS IIb Benefit ≥ Risk Additional studies with broad objectives needed; additional registry data would be helpful Procedure/Treatment MAY BE CONSIDERED</td>
<td>Recommendation’s usefulness/efficacy less well established</td>
<td>Recommendation’s usefulness/efficacy less well established</td>
<td>Recommendation’s usefulness/efficacy less well established</td>
</tr>
<tr>
<td>CLASS III No Benefit or CLASS III Harm</td>
<td>Recommendation that procedure or treatment is not useful/effective and may be harmful</td>
<td>Recommendation that procedure or treatment is not useful/effective and may be harmful</td>
<td>Recommendation that procedure or treatment is not useful/effective and may be harmful</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ESTIMATE OF CERTAINTY (PRECISION) OF TREATMENT EFFECT</th>
<th>LEVEL A</th>
<th>LEVEL B</th>
<th>LEVEL C</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECIAL CHARACTERISTICS</td>
<td>Multiple populations evaluated</td>
<td>Limited populations evaluated</td>
<td>Very limited populations evaluated</td>
</tr>
<tr>
<td>Data derived from multiple randomized clinical trials or meta-analyses</td>
<td>Data derived from a single randomized trial or nonrandomized studies</td>
<td>Only consensus opinion of experts, case studies, or standard of care</td>
<td></td>
</tr>
</tbody>
</table>

A recommendation with Level of Evidence B or C does not imply that the recommendation is weak. Many important clinical questions addressed in the guidelines do not lend themselves to clinical trials. Although randomized trials are unavailable, there may be a very clear clinical consensus that a particular test or therapy is useful or effective.

*Data available from clinical trials or registries about the usefulness/efficacy in different subpopulations, such as sex, age, history of diabetes, history of prior myocardial infarction, history of heart failure, and prior aspirin use.

†For comparative effectiveness recommendations (Class I and IIa; Level of Evidence A and B only), studies that support the use of comparator verbs should involve direct comparisons of the treatments or strategies being evaluated.
for which sparse data are available, a survey of current practice among the clinicians on the writing committee is the basis for LOE C recommendations and no references are cited. The schema for COR and LOE are summarized in Table 1, which also provides suggested phrases for writing recommendations within each COR. A new addition to this methodology is separation of the Class III recommendations to determine whether the recommendation is determined to be of “no benefit” or is associated with “harm” to the patient. In addition, in view of the increasing number of comparative effectiveness studies, comparator verbs and suggested phrases for writing recommendations for the comparative effectiveness of one treatment or strategy versus another have been added for COR I and IIa, LOE A or B only.

In view of the advances in medical therapy across the spectrum of cardiovascular diseases, the Task Force has designated the term guideline-directed medical therapy (GDMT) to represent optimal medical therapy as defined by ACCF/AHA guideline-recommended therapies (primarily Class I). This new term, GDMT, will be used herein and throughout all future guidelines.

Because the ACCF/AHA practice guidelines address patient populations (and clinicians) residing in North America, drugs that are not currently available in North America are discussed in the text without a specific COR. For studies performed in large numbers of subjects outside North America, each writing committee reviews the potential influence of different practice patterns and patient populations on the treatment effect and relevance to the ACCF/AHA target population to determine whether the findings should inform a specific recommendation.

The ACCF/AHA practice guidelines are intended to assist clinicians in clinical decision making by describing a range of generally acceptable approaches to the diagnosis, management, and prevention of specific diseases or conditions. The guidelines attempt to define practices that meet the needs of most patients in most circumstances. The ultimate judgment regarding care of a particular patient must be made by the clinician and patient in light of all circumstances presented by that patient. As a result, situations may arise for which deviations from these guidelines may be appropriate. Clinical decision making should involve consideration of the quality and availability of expertise in the area where care is provided. When these guidelines are used as the basis for regulatory or payer decisions, the goal should be improvement in quality of care. The Task Force recognizes that situations arise in which additional data are needed to inform patient care more effectively; these areas will be identified within each respective guideline when appropriate.

Prescribed courses of treatment in accordance with these recommendations are effective only if followed. Because lack of patient understanding and adherence may adversely affect outcomes, clinicians should make every effort to engage the patient’s active participation in prescribed medical regimens and lifestyles. In addition, patients should be informed of the risks, benefits, and alternatives to a particular treatment and be involved in shared decision making whenever feasible, particularly for COR IIa and IIb, for which the benefit-to-risk ratio may be lower.

The Task Force makes every effort to avoid actual, potential, or perceived conflicts of interest that may arise as a result of industry relationships or personal interests among the members of the writing committee. All writing committee members and peer reviewers of the guideline are required to disclose all current healthcare-related relationships, including those existing 12 months before initiation of the writing effort. In December 2009, the ACCF and AHA implemented a new policy for relationship with industry and other entities (RWI) that requires the writing committee chair plus a minimum of 50% of the writing committee to have no relevant RWI (Appendix 1 includes the ACCF/AHA definition of relevance). These statements are reviewed by the Task Force and all members during each conference call and/or meeting of the writing committee and are updated as changes occur. All guideline recommendations require a confidential vote by the writing committee and must be approved by a consensus of the voting members. Members are not permitted to draft or vote on any text or recommendations pertaining to their RWI. Members who recused themselves from voting are indicated in the list of writing committee members, and specific section recusals are noted in Appendix 1. Authors’ and peer reviewers’ RWI pertinent to this guideline are disclosed in Appendixes 1 and 2, respectively. Additionally, to ensure complete transparency, writing committee members’ comprehensive disclosure information—including RWI not pertinent to this document—is available as an online supplement. Comprehensive disclosure information for the Task Force is also available online at http://www.cardiosource.org/en/ACC/About-ACC/Who-We-Are/Leadership/Guidelines-and-Documents-Task-Forces.aspx. The work of writing committees is supported exclusively by the ACCF and AHA without commercial support. Writing committee members volunteered their time for this activity.

In an effort to maintain relevance at the point of care for practicing clinicians, the Task Force continues to oversee an ongoing process improvement initiative. As a result, in response to pilot projects, several changes to these guidelines will be apparent, including limited narrative text, a focus on summary and evidence tables (with references linked to abstracts in PubMed), and more liberal use of summary recommendation tables (with references that support LOE) to serve as a quick reference.

In April 2011, the Institute of Medicine released 2 reports: Clinical Practice Guidelines We Can Trust and Finding What Works in Health Care: Standards for Systematic Reviews. It is noteworthy that the ACCF/AHA practice guidelines are cited as being compliant with many of the proposed standards. A thorough review of these reports and of our current methodology is under way, with further enhancements anticipated.

The recommendations in this guideline are considered current until they are superseded by a focused update or the full-text guideline is revised. Guidelines are official policy of both the ACCF and AHA. The reader is encouraged to consult the full-text guideline for additional guidance and details about heart failure, because the Executive Summary contains only the recommendations.

Jeffrey L. Anderson, MD, FACC, FAHA
Chair, ACCF/AHA Task Force on Practice Guidelines
1. Introduction

1.1. Methodology and Evidence Review

The recommendations listed in this document are, whenever possible, evidence based. An extensive evidence review was conducted through October 2011 and includes selected other references through April 2013. The relevant data are included in evidence tables in the Data Supplement. Searches were extended to studies, reviews, and other evidence conducted in human subjects and that were published in English from PubMed, EMBASE, Cochrane, Agency for Healthcare Research and Quality Reports, and other selected databases relevant to this guideline. Key search words included but were not limited to the following: heart failure, cardiomyopathy, quality of life, mortality, hospitalizations, prevention, biomarkers, hypertension, dyslipidemia, imaging, cardiac catheterization, endomyocardial biopsy, angiotensin-converting enzyme inhibitors, angiotensin-receptor antagonists/blockers, beta blockers, cardiac, cardiac resynchronization therapy, defibrillator, device-based therapy, implantable cardioverter-defibrillator, device implantation, medical therapy, acute decompensated heart failure, preserved ejection fraction, terminal care and transplantation, quality measures, and performance measures. Additionally, the committee reviewed documents related to the subject matter previously published by the ACCF and AHA. References selected and published in this document are representative and not all-inclusive.

1.2. Organization of the Writing Committee

The committee was composed of physicians and a nurse with broad expertise in the evaluation, care, and management of patients with heart failure (HF). The authors included general cardiologists, HF and transplant specialists, electrophysiologists, general internists, and physicians with methodological expertise. The committee included representatives from the ACCF, AHA, American Academy of Family Physicians, American College of Chest Physicians, American College of Physicians, Heart Rhythm Society, and International Society for Heart and Lung Transplantation.

1.3. Document Review and Approval

This document was reviewed by 2 official reviewers each nominated by both the ACCF and the AHA, as well as 1 to 2 reviewers each from the American Academy of Family Physicians, American College of Chest Physicians, Heart Rhythm Society, and International Society for Heart and Lung Transplantation, as well as 32 individual content reviewers (including members of the ACCF Adult Congenital and Pediatric Cardiology Council, ACCF Cardiovascular Team Council, ACCF Council on Cardiovascular Care for Older Adults, ACCF Electrophysiology Committee, ACCF Heart Failure and Transplant Council, ACCF Imaging Council, ACCF Prevention Committee, ACCF Surgeons’ Scientific Council, and ACCF Task Force on Appropriate Use Criteria). All information on reviewers’ RWI was distributed to the writing committee and is published in this document (Appendix 2).

This document was approved for publication by the governing bodies of the ACCF and AHA and endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation, American College of Chest Physicians, Heart Rhythm Society, and International Society for Heart and Lung Transplantation.

1.4. Scope of This Guideline With Reference to Other Relevant Guidelines or Statements

This guideline covers multiple management issues for the adult patient with HF. Although there is an abundance of evidence addressing HF, for many important clinical considerations, this writing committee was unable to identify sufficient data to properly inform a recommendation. The writing committee actively worked to reduce the number of LOE “C” recommendations, especially for Class I—recommended therapies. Despite these limitations, it is apparent that much can be done for HF. Adherence to the clinical practice guidelines herein reproduced should lead to improved patient outcomes.

Although of increasing importance, children with HF and adults with congenital heart lesions are not specifically addressed in this guideline. The reader is referred to publicly available resources to address questions in these areas. However, this guideline does address HF with preserved ejection fraction (EF) in more detail and similarly revisits hospitalized HF. Additional areas of renewed interest are stage D HF, palliative care, transition of care, and quality of care for HF. Certain management strategies appropriate for the patient at risk for HF or already affected by HF are also reviewed in numerous relevant clinical practice guidelines and scientific statements published by the ACCF/AHA Task Force on Practice Guidelines, AHA, ACCF Task Force on Appropriate Use Criteria, European Society of Cardiology, Heart Failure Society of America, and the National Heart, Lung, and Blood Institute. The writing committee saw no need to reiterate the recommendations contained in those guidelines and chose to harmonize recommendations when appropriate and eliminate discrepancies. This is especially the case for device-based therapeutics, where complete alignment between the HF guideline and the device-based therapy guideline was deemed imperative.3 Some recommendations from earlier guidelines have been updated as warranted by new evidence or a better understanding of earlier evidence, whereas others that were no longer accurate or relevant or that were overlapping were modified; recommendations from previous guidelines that were similar or redundant were eliminated or consolidated when possible.

The present document recommends a combination of lifestyle modifications and medications that constitute GDMT. GDMT is specifically referenced in the recommendations for treatment of HF (Section 6.3.2). Both for GDMT and other recommended drug treatment regimens, the reader is advised to confirm dosages with product insert material and to evaluate carefully for contraindications and drug-drug interactions. Table 2 is a list of documents deemed pertinent to this effort and is intended for use as a resource; it obviates the need to repeat already extant guideline recommendations. Additional other HF guideline statements are highlighted as well for the purpose of comparison and completeness.

2. Definition of HF

HF is a complex clinical syndrome that results from any structural or functional impairment of ventricular filling or
The cardinal manifestations of HF are dyspnea and fatigue, which may limit exercise tolerance, and fluid retention, which may lead to pulmonary and/or splanchnic congestion and/or peripheral edema. Some patients have exercise intolerance but little evidence of fluid retention, whereas others complain primarily of edema, dyspnea, or fatigue. Because some patients present without signs or symptoms of volume overload, the term “heart failure” is preferred over “congestive heart failure.” There is no single diagnostic test for HF because it is largely a clinical diagnosis based on a careful history and physical examination.

The clinical syndrome of HF may result from disorders of the pericardium, myocardium, endocardium, heart valves, or...
great vessels, or from certain metabolic abnormalities, but most patients with HF have symptoms due to impaired left ventricular (LV) myocardial function. It should be emphasized that HF is not synonymous with either cardiomyopathy or LV dysfunction; these latter terms describe possible structural or functional reasons for the development of HF. HF may be associated with a wide spectrum of LV functional abnormalities, which may range from patients with normal LV size and preserved EF to those with severe dilatation and/or markedly reduced EF. In most patients, abnormalities of systolic and diastolic dysfunction coexist, irrespective of EF. EF is considered important in classification of patients with HF because of differing patient demographics, comorbid conditions, prognosis, and response to therapies and because most clinical trials selected patients based on EF. EF values are dependent on the imaging technique used, method of analysis, and operator. As other techniques may indicate abnormalities in systolic function among patients with a preserved EF, it is preferable to use the terms preserved or reduced EF over preserved or reduced systolic function. For the remainder of this guideline, we will consistently refer to HF with preserved EF and HF with reduced EF as HFrEF and HFpEF, respectively (Table 3).

3. HF Classifications

Both the ACCF/AHA stages of HF and the New York Heart Association (NYHA) functional classification provide useful and complementary information about the presence and severity of HF. The ACCF/AHA stages of HF emphasize the development and progression of disease and can be used to describe individuals and populations, whereas the NYHA classes focus on exercise capacity and the symptomatic status of the disease (Table 4).

4. Epidemiology

The lifetime risk of developing HF is 20% for Americans ≥40 years of age. In the United States, HF incidence has largely remained stable over the past several decades, with >650,000 new HF cases diagnosed annually. HF incidence increases with age, rising from approximately 20 per 1000 individuals 65 to 69 years of age to >80 per 1000 individuals among those ≥85 years of age. Approximately 5.1 million persons in the United States have clinically manifest HF, and the prevalence continues to rise. In the Medicare-eligible population, HF prevalence increased from 90 to 121 per 1000 beneficiaries from 1994 to 2003. HFpEF and HFrEF each make up about half of the overall HF burden. One in

Table 3. Definitions of HFrEF and HFpEF

<table>
<thead>
<tr>
<th>Classification</th>
<th>EF (%)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Heart failure with reduced ejection fraction (HFrEF)</td>
<td>≤40</td>
<td>Also referred to as systolic HF. Randomized controlled trials have mainly enrolled patients with HFrEF, and it is only in these patients that efficacious therapies have been demonstrated to date.</td>
</tr>
<tr>
<td>II. Heart failure with preserved ejection fraction (HFpEF)</td>
<td>≥50</td>
<td>Also referred to as diastolic HF. Several different criteria have been used to further define HFpEF. The diagnosis of HFpEF is challenging because it is largely one of excluding other potential noncardiac causes of symptoms suggestive of HF. To date, efficacious therapies have not been identified.</td>
</tr>
<tr>
<td>a. HFpEF, borderline</td>
<td>41 to 49</td>
<td>These patients fall into a borderline or intermediate group. Their characteristics, treatment patterns, and outcomes appear similar to those of patients with HFpEF.</td>
</tr>
<tr>
<td>b. HFpEF, improved</td>
<td>>40</td>
<td>It has been recognized that a subset of patients with HFpEF previously had HFrEF. These patients with improvement or recovery in EF may be clinically distinct from those with persistently preserved or reduced EF. Further research is needed to better characterize these patients.</td>
</tr>
</tbody>
</table>

EF indicates ejection fraction; HF, heart failure; HFpEF, heart failure with preserved ejection fraction; and HFrEF, heart failure with reduced ejection fraction.

Table 4. Comparison of ACCF/AHA Stages of HF and NYHA Functional Classifications

<table>
<thead>
<tr>
<th>ACCF/AHA Stages of HF</th>
<th>NYHA Functional Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>A At high risk for HF but without structural heart disease or symptoms of HF</td>
<td>None</td>
</tr>
<tr>
<td>B Structural heart disease but without signs or symptoms of HF</td>
<td>I No limitation of physical activity. Ordinary physical activity does not cause symptoms of HF.</td>
</tr>
<tr>
<td>C Structural heart disease with prior or current symptoms of HF</td>
<td>I No limitation of physical activity. Ordinary physical activity does not cause symptoms of HF.</td>
</tr>
<tr>
<td></td>
<td>II Slight limitation of physical activity. Comfortable at rest, but ordinary physical activity results in symptoms of HF.</td>
</tr>
<tr>
<td></td>
<td>III Marked limitation of physical activity. Comfortable at rest, but less than ordinary activity causes symptoms of HF.</td>
</tr>
<tr>
<td>D Refractory HF requiring specialized interventions</td>
<td>IV Unable to carry on any physical activity without symptoms of HF, or symptoms of HF at rest.</td>
</tr>
</tbody>
</table>

ACCF indicates American College of Cardiology Foundation; AHA, American Heart Association; HF, heart failure; and NYHA, New York Heart Association.
5 Americans will be >65 years of age by 2050.42 Because HF prevalence is highest in this group, the number of Americans with HF is expected to significantly worsen in the future. Disparities in the epidemiology of HF have been identified. Blacks have the highest risk for HF.45 In the ARIC (Atherosclerosis Risk in Communities) study, incidence rate per 1000 person-years was lowest among white women41,42 and highest among black men,46 with blacks having a greater 5-year mortality rate than whites.47 HF in non-Hispanic black males and females has a prevalence of 4.5% and 3.8%, respectively, versus 2.7% and 1.8% in non-Hispanic white males and females, respectively.40

5. Initial and Serial Evaluation of the HF Patient: Recommendations

5.1. Clinical Evaluation

See Table 5 for multivariable clinical risk scores.

5.1.1. History and Physical Examination

Class I

1. A thorough history and physical examination should be obtained/performed in patients presenting with HF to identify cardiac and noncardiac disorders or behaviors that might cause or accelerate the development or progression of HF. (Level of Evidence: C)

2. In patients with idiopathic dilated cardiomyopathy, a 3-generational family history should be obtained to aid in establishing the diagnosis of familial dilated cardiomyopathy. (Level of Evidence: C)

3. Volume status and vital signs should be assessed at each patient encounter. This includes serial assessment of weight, as well as estimates of jugular venous pressure and the presence of peripheral edema or orthopnea.48–51 (Level of Evidence: B)

5.1.2. Risk Scoring

Class IIa

1. Validated multivariable risk scores can be useful to estimate subsequent risk of mortality in ambulatory or hospitalized patients with HF.52–60 (Level of Evidence: B)

5.2. Diagnostic Tests

Class I

1. Initial laboratory evaluation of patients presenting with HF should include complete blood count, urinalysis, serum electrolytes (including calcium and magnesium), blood urea nitrogen, serum creatinine, glucose, fasting lipid profile, liver function tests, and thyroid-stimulating hormone. (Level of Evidence: C)

2. Serial monitoring, when indicated, should include serum electrolytes and renal function. (Level of Evidence: C)

3. A 12-lead electrocardiogram should be performed initially on all patients presenting with HF. (Level of Evidence: C)

Class IIa

1. Screening for hemochromatosis or HIV is reasonable in selected patients who present with HF43 (Level of Evidence: C)

2. Diagnostic tests for rheumatologic diseases, amyloidosis, or pheochromocytoma are reasonable in patients presenting with HF in whom there is a clinical suspicion of these diseases. (Level of Evidence: C)

Table 5. Selected Multivariable Risk Scores to Predict Outcome in HF

<table>
<thead>
<tr>
<th>Risk Score</th>
<th>Reference/Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronic HF</td>
<td></td>
</tr>
<tr>
<td>All patients with chronic HF</td>
<td></td>
</tr>
<tr>
<td>Seattle Heart Failure Model</td>
<td>56/ http://SeattleHeartFailureModel.org</td>
</tr>
<tr>
<td>Heart Failure Survival Score</td>
<td>52/ http://handheld.softpedia.com/get/Health/Calculator/HFSS-Calc-37354.shtml</td>
</tr>
<tr>
<td>CHARM Risk Score</td>
<td>59</td>
</tr>
<tr>
<td>CORONA Risk Score</td>
<td>60</td>
</tr>
<tr>
<td>Specific to chronic HF EF</td>
<td></td>
</tr>
<tr>
<td>I-PRESERVE Score</td>
<td>54</td>
</tr>
<tr>
<td>Acutely decompensated HF</td>
<td></td>
</tr>
<tr>
<td>American Heart Association Get With The Guidelines Score</td>
<td>53</td>
</tr>
<tr>
<td>EFFECT Risk Score</td>
<td>55/ http://www.ccort.ca/Research/CHFRiskModel.aspx</td>
</tr>
<tr>
<td>ESCAPE Risk Model and Discharge Score</td>
<td>61</td>
</tr>
<tr>
<td>OPTIMIZE HF Risk-Prediction Nomogram</td>
<td>62</td>
</tr>
</tbody>
</table>

ADHERE indicates Acute Decompensated Heart Failure National Registry; CHARM, Candesartan in Heart failure-Assessment of Reduction in Mortality and morbidity; CORONA, Controlled Rosuvastatin Multinational Trial in Heart Failure; EFFECT, Enhanced Feedback for Effective Cardiac Treatment; ESCAPE, Evaluation Study of Congestive Heart Failure and Pulmonary Artery Catheterization Effectiveness; HF, heart failure; HFpEF, heart failure with preserved ejection fraction; I-PRESERVE, Irbesartan in Heart Failure with Preserved Ejection Fraction Study; and OPTIMIZE, Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure.
5.3. Biomarkers
See Table 6 for a summary of recommendations from this section.

A. Ambulatory/Outpatient

Class I

1. In ambulatory patients with dyspnea, measurement of B-type natriuretic peptide (BNP) or N-terminal pro-B-type natriuretic peptide (NT-proBNP) is useful to support clinical decision making regarding the diagnosis of HF, especially in the setting of clinical uncertainty.64–70 (Level of Evidence: A)

2. Measurement of BNP or NT-proBNP is useful for establishing prognosis or disease severity in chronic HF.69,71–76 (Level of Evidence: A)

Class IIa

1. BNP- or NT-proBNP–guided HF therapy can be useful to achieve optimal dosing of GDMT in select clinically euvolemic patients followed in a well-structured HF disease management program.77–84 (Level of Evidence: B)

Class IIb

1. The usefulness of serial measurement of BNP or NT-proBNP to reduce hospitalization or mortality in patients with HF is not well established.77–84 (Level of Evidence: B)

2. Measurement of other clinically available tests such as biomarkers of myocardial injury or fibrosis may be considered for additive risk stratification in patients with chronic HF.86–89,96 (Level of Evidence: B)

B. Hospitalized/Acute

Class I

1. Measurement of BNP or NT-proBNP is useful to support clinical judgment for the diagnosis of acutely decompensated HF, especially in the setting of uncertainty for the diagnosis.92–98 (Level of Evidence: A)

2. Measurement of BNP or NT-proBNP and/or cardiac troponin is useful for establishing prognosis or disease severity in acutely decompensated HF.96,99–106 (Level of Evidence: A)

Class IIb

1. The usefulness of BNP- or NT-proBNP–guided therapy for acutely decompensated HF is not well established.107,108 (Level of Evidence: C)

2. Measurement of other clinically available tests such as biomarkers of myocardial injury or fibrosis may be considered for additive risk stratification in patients with acutely decompensated HF.96,101,104,106–108,110,112–115 (Level of Evidence: A)

5.4. Noninvasive Cardiac Imaging
See Table 7 for a summary of recommendations from this section.

Class I

1. Patients with suspected or new-onset HF, or those presenting with acute decompensated HF, should undergo a chest x-ray to assess heart size and pulmonary congestion and to detect alternative cardiac, pulmonary, and other diseases that may cause or contribute to the patient’s symptoms. (Level of Evidence: C)

2. A 2-dimensional echocardiogram with Doppler should be performed during initial evaluation of patients presenting with HF to assess ventricular function, size, wall thickness, wall motion, and valve function. (Level of Evidence: C)

3. Repeat measurement of EF and measurement of the severity of structural remodeling are useful to provide information in patients with HF who have had a significant change in clinical status; who have experienced or recovered from a clinical event; or who have received treatment, including GDMT, that might have had a significant effect on cardiac function; or who may be candidates for device therapy. (Level of Evidence: C)
1. Noninvasive imaging to detect myocardial ischemia and viability is reasonable in patients presenting with de novo HF, who have known coronary artery disease (CAD) and no angina, unless the patient is not eligible for revascularization of any kind. (Level of Evidence: C)
2. Viability assessment is reasonable before revascularization in HF patients with CAD. (Level of Evidence: B)
3. Radionuclide ventriculography or MRI can be useful to assess left ventricular ejection fraction (LVEF) and volume when echocardiography is inadequate. (Level of Evidence: C)
4. Magnetic resonance imaging is reasonable when assessing myocardial infiltrative processes or scar burden. (Level of Evidence: B)

Class III: No Benefit
1. Routine repeat measurement of LV function assessment in the absence of clinical status change or treatment interventions should not be performed. (Level of Evidence: B)

5.5. Invasive Evaluation
See Table 8 for a summary of recommendations from this section.

Table 7. Recommendations for Noninvasive Cardiac Imaging

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>COR</th>
<th>LOE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with suspected, acute, or new-onset HF should undergo a chest x-ray</td>
<td>I</td>
<td>C</td>
</tr>
<tr>
<td>A 2-dimensional echocardiogram with Doppler should be performed for initial evaluation of HF</td>
<td>I</td>
<td>C</td>
</tr>
<tr>
<td>Repeat measurement of EF is useful in patients with HF who have had a significant change in clinical status or received treatment that might affect cardiac function or for consideration of device therapy</td>
<td>I</td>
<td>C</td>
</tr>
<tr>
<td>Noninvasive imaging to detect myocardial ischemia and viability is reasonable in HF and CAD</td>
<td>IIa</td>
<td>C</td>
</tr>
<tr>
<td>Viability assessment is reasonable before revascularization in HF patients with CAD</td>
<td>IIa</td>
<td>B117-121</td>
</tr>
<tr>
<td>Radionuclide ventriculography or MRI can be useful to assess LVEF and volume</td>
<td>IIa</td>
<td>C</td>
</tr>
<tr>
<td>MRI is reasonable when assessing myocardial infiltration or scar</td>
<td>IIa</td>
<td>B122-124</td>
</tr>
<tr>
<td>Routine repeat measurement of LV function assessment should not be performed</td>
<td>III: No Benefit</td>
<td>B125,126</td>
</tr>
</tbody>
</table>

CAD indicates coronary artery disease; COR, Class of Recommendation; EF, ejection fraction; HF, heart failure; LOE, Level of Evidence; LV, left ventricular; LVEF, left ventricular ejection fraction; MRI, magnetic resonance imaging.

Table 8. Recommendations for Invasive Evaluation

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>COR</th>
<th>LOE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitoring with a pulmonary artery catheter should be performed in patients with respiratory distress or impaired systemic perfusion when clinical assessment is inadequate</td>
<td>I</td>
<td>C</td>
</tr>
<tr>
<td>Invasive hemodynamic monitoring can be useful for carefully selected patients with acute HF with persistent symptoms and/or when hemodynamics are uncertain</td>
<td>IIa</td>
<td>C</td>
</tr>
<tr>
<td>When ischemia may be contributing to HF, coronary arteriography is reasonable</td>
<td>IIa</td>
<td>C</td>
</tr>
<tr>
<td>Endomyocardial biopsy can be useful in patients with HF when a specific diagnosis is suspected that would influence therapy</td>
<td>IIa</td>
<td>C</td>
</tr>
<tr>
<td>Routine use of invasive hemodynamic monitoring is not recommended in normotensive patients with acute HF</td>
<td>III: No Benefit</td>
<td>B127</td>
</tr>
<tr>
<td>Endomyocardial biopsy should not be performed in the routine evaluation of HF</td>
<td>III: Harm</td>
<td>C</td>
</tr>
</tbody>
</table>

COR indicates Class of Recommendation; HF, heart failure; and LOE, Level of Evidence.
3. Endomyocardial biopsy can be useful in patients presenting with HF when a specific diagnosis is suspected that would influence therapy. (Level of Evidence: C)

Class III: No Benefit

1. Routine use of invasive hemodynamic monitoring is not recommended in normotensive patients with acute decompensated HF and congestion with symptomatic response to diuretics and vasodilators. (Level of Evidence: B)

Class III: Harm

1. Endomyocardial biopsy should not be performed in the routine evaluation of patients with HF. (Level of Evidence: C)

6. Treatment of Stages A to D: Recommendations

6.1. Stage A

Class I

1. Hypertension and lipid disorders should be controlled in accordance with contemporary guidelines to lower the risk of HF. (Level of Evidence: A)

2. Other conditions that may lead to or contribute to HF, such as obesity, diabetes mellitus, tobacco use, and known cardiotoxic agents, should be controlled or avoided. (Level of Evidence: C)

6.2. Stage B

See Table 9 for a summary of recommendations from this section.

Class I

1. In all patients with a recent or remote history of myocardial infarction (MI) or acute coronary syndrome (ACS) and reduced EF, angiotensin-converting enzyme (ACE) inhibitors should be used to prevent symptomatic HF and reduce mortality. In patients intolerant to ACE inhibitors, angiotensin-receptor blockers (ARBs) are appropriate unless contraindicated. (Level of Evidence: A)

2. In all patients with a recent or remote history of MI or ACS and reduced EF, evidence-based beta blockers should be used to reduce mortality. (Level of Evidence: B)

3. In all patients with a recent or remote history of MI or ACS, statins should be used to prevent symptomatic HF and cardiovascular events. (Level of Evidence: A)

4. In patients with structural cardiac abnormalities, including LV hypertrophy, in the absence of a history of MI or ACS, blood pressure should be controlled in accordance with clinical practice guidelines for hypertension to prevent symptomatic HF. (Level of Evidence: A)

5. ACE inhibitors should be used in all patients with a reduced EF to prevent symptomatic HF, even if they do not have a history of MI. (Level of Evidence: C)

6. Beta blockers should be used in all patients with a reduced EF to prevent symptomatic HF, even if they do not have a history of MI. (Level of Evidence: C)

Class IIa

1. To prevent sudden death, placement of an implantable cardioverter-defibrillator (ICD) is reasonable in patients with asymptomatic ischemic cardiomyopathy who are at least 40 days post-MI, have an LVEF of 30% or less, are on appropriate medical therapy, and have reasonable expectation of survival with a good functional status for more than 1 year. (Level of Evidence: B)

Class III: Harm

1. Nondihydropyridine calcium channel blockers with negative inotropic effects may be harmful in asymptomatic patients with low LVEF and no symptoms of HF after MI. (Level of Evidence: C)

Table 9. Recommendations for Treatment of Stage B HF

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>COR</th>
<th>LOE</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>In patients with a history of MI and reduced EF, ACE inhibitors or ARBs should be used to prevent HF</td>
<td>I</td>
<td>A</td>
<td>132–136</td>
</tr>
<tr>
<td>In patients with MI and reduced EF, evidence-based beta blockers should be used to prevent HF</td>
<td>I</td>
<td>B</td>
<td>137–139</td>
</tr>
<tr>
<td>In patients with MI, statins should be used to prevent HF</td>
<td>I</td>
<td>A</td>
<td>140–146</td>
</tr>
<tr>
<td>Blood pressure should be controlled to prevent symptomatic HF</td>
<td>I</td>
<td>A</td>
<td>28, 128–131</td>
</tr>
<tr>
<td>ACE inhibitors should be used in all patients with a reduced EF to prevent HF</td>
<td>I</td>
<td>A</td>
<td>135, 147</td>
</tr>
<tr>
<td>Beta blockers should be used in all patients with a reduced EF to prevent HF</td>
<td>I</td>
<td>C</td>
<td>N/A</td>
</tr>
<tr>
<td>An ICD is reasonable in patients with asymptomatic ischemic cardiomyopathy who are at least 40 d post-MI, have an LVEF ≤30%, and on GDMT</td>
<td>IIa</td>
<td>B</td>
<td>148</td>
</tr>
<tr>
<td>Nondihydropyridine calcium channel blockers may be harmful in patients with low LVEF</td>
<td>III: Harm</td>
<td>C</td>
<td>N/A</td>
</tr>
</tbody>
</table>

ACE indicates angiotensin-converting enzyme; ARB, angiotensin-receptor blocker; COR, Class of Recommendation; EF, ejection fraction; GDMT, guideline-directed medical therapy; HF, heart failure; ICD, implantable cardioverter-defibrillator; LOE, Level of Evidence; LVEF, left ventricular ejection fraction; MI, myocardial infarction; and N/A, not available.
6.3. Stage C

6.3.1. Nonpharmacological Interventions

Class I

1. Patients with HF should receive specific education to facilitate HF self-care.149–154 (Level of Evidence: B)
2. Exercise training (or regular physical activity) is recommended as safe and effective for patients with HF who are able to participate to improve functional status.155–158 (Level of Evidence: A)

Class IIa

1. Sodium restriction is reasonable for patients with symptomatic HF to reduce congestive symptoms. (Level of Evidence: C)
2. Continuous positive airway pressure can be beneficial to increase LVEF and improve functional status in patients with HF and sleep apnea.159–162 (Level of Evidence: B)
3. Cardiac rehabilitation can be useful in clinically stable patients with HF to improve functional capacity, exercise duration, health-related quality of life, and mortality.155,157,158,163–166 (Level of Evidence: B)

6.3.2. Pharmacological Treatment for Stage C HFrEF

Class I

1. Measures listed as Class I recommendations for patients in stages A and B are recommended where appropriate for patients in stage C. (Levels of Evidence: A, B, and C as appropriate)

2. GDMT as depicted in Figure 1 should be the mainstay of pharmacological therapy for HFrEF.134,136,137,167–182 (Level of Evidence: A)

6.3.2.1. Diuretics

See Table 10 for oral diuretics recommended for use in the treatment of chronic HF.

Class I

1. Diuretics are recommended in patients with HFrEF who have evidence of fluid retention, unless contraindicated, to improve symptoms. (Level of Evidence: C)

6.3.2.2. ACE Inhibitors

See Table 11 for drugs commonly used for HFrEF (stage C HF).

Class I

1. ACE inhibitors are recommended in patients with HFrEF and current or prior symptoms, unless contraindicated, to reduce morbidity and mortality.134,167–169 (Level of Evidence: A)

6.3.2.3. Angiotensin-Receptor Blockers

Class I

1. ARBs are recommended in patients with HFrEF with current or prior symptoms who are ACE inhibitor
Table 10. Oral Diuretics Recommended for Use in the Treatment of Chronic HF

<table>
<thead>
<tr>
<th>Drug</th>
<th>Initial Daily Dose(s)</th>
<th>Maximum Total Daily Dose</th>
<th>Duration of Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loop diuretics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bumetanide</td>
<td>0.5 to 1.0 mg once or twice</td>
<td>10 mg</td>
<td>4 to 6 h</td>
</tr>
<tr>
<td>Furosemide</td>
<td>20 to 40 mg once or twice</td>
<td>600 mg</td>
<td>6 to 8 h</td>
</tr>
<tr>
<td>Torsemide</td>
<td>10 to 20 mg once</td>
<td>200 mg</td>
<td>12 to 16 h</td>
</tr>
<tr>
<td>Thiazide diuretics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorothiazide</td>
<td>250 to 500 mg once or twice</td>
<td>1000 mg</td>
<td>6 to 12 h</td>
</tr>
<tr>
<td>Chlorthalidone</td>
<td>12.5 to 25.0 mg once</td>
<td>100 mg</td>
<td>24 to 72 h</td>
</tr>
<tr>
<td>Hydrochlorothiazide</td>
<td>25 mg once or twice</td>
<td>200 mg</td>
<td>6 to 12 h</td>
</tr>
<tr>
<td>Indapamide</td>
<td>2.5 mg once</td>
<td>5 mg</td>
<td>36 h</td>
</tr>
<tr>
<td>Metolazone</td>
<td>2.5 mg once</td>
<td>20 mg</td>
<td>12 to 24 h</td>
</tr>
<tr>
<td>Potassium-sparing diuretics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amlodipine</td>
<td>5 mg once</td>
<td>20 mg</td>
<td>24 h</td>
</tr>
<tr>
<td>Spironolactone</td>
<td>12.5 to 25.0 mg once</td>
<td>50 mg†</td>
<td>1 to 3 h</td>
</tr>
<tr>
<td>Triamterene</td>
<td>50 to 75 mg twice</td>
<td>200 mg</td>
<td>7 to 9 h</td>
</tr>
<tr>
<td>Sequential nephron blockade</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metolazone‡</td>
<td>2.5 to 10.0 mg once or twice plus loop diuretic</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Hydrochlorothiazide</td>
<td>25 to 100 mg once or twice plus loop diuretic</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Chlorothiazide (IV)</td>
<td>500 to 1000 mg once or twice plus loop diuretic</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

*Eplerenone, although also a diuretic, is primarily used in chronic HF.
†Higher doses may occasionally be used with close monitoring.
‡See Section 7.3.

HF indicates heart failure; IV, intravenous; and N/A, not applicable.

intolerant, unless contraindicated, to reduce morbidity and mortality.136,170,171,189 (Level of Evidence: A)

Class I

1. Use of 1 of the 3 beta blockers proven to reduce mortality (eg, bisoprolol, carvedilol, and sustained-release metoprolol succinate) is recommended for all patients with current or prior symptoms of HFrEF, unless contraindicated, to reduce morbidity and mortality.137,172–175,187 (Level of Evidence: A)

Class IIb

1. Addition of an ARB may be considered in persistently symptomatic patients with HFrEF who are already being treated with an ACE inhibitor and a beta blocker in whom an aldosterone antagonist is not indicated or tolerated.176,179 (Level of Evidence: A)

Class III: Harm

1. Routine combined use of an ACE inhibitor, ARB, and aldosterone antagonist is potentially harmful for patients with HFrEF. (Level of Evidence: C)

6.3.2.4. Beta Blockers

Class I

1. Aldosterone receptor antagonists (or mineralocorticoid receptor antagonists) are recommended in patients with NYHA class II–IV HF and who have LVEF of 35% or less, unless contraindicated, to reduce morbidity and mortality. Patients with NYHA class II HF should have a history of prior cardiovascular hospitalization or elevated plasma natriuretic peptide levels to be considered for aldosterone receptor antagonists. Creatinine should be 2.5 mg/dL or less in men or 2.0 mg/dL or less in women (or estimated glomerular filtration rate >30 mL/min/1.73 m²), and potassium should be less than 5.0 mEq/L. Careful monitoring of potassium, renal function, and diuretic dosing should be performed at initiation and closely followed thereafter to minimize risk of hyperkalemia and renal insufficiency.181,182,197 (Level of Evidence: A)

2. Aldosterone receptor antagonists are recommended to reduce morbidity and mortality following an acute MI in patients who have LVEF of 40% or less who develop symptoms of HF or have a history of diabetes mellitus, unless contraindicated.184 (Level of Evidence: B)

Class III: Harm

1. Inappropriate use of aldosterone receptor antagonists is potentially harmful because of life-threatening hyperkalemia or renal insufficiency when serum creatinine is greater than 2.5 mg/dL in men or greater than 2.0 mg/dL in women (or estimated glomerular filtration rate <30 mL/min/1.73 m²), and/or potassium greater than 5.0 mEq/L.198,199 (Level of Evidence: B)

6.3.2.5. Aldosterone Receptor Antagonists

See Table 12 for aldosterone receptor antagonists drug dosing.

Class I

1. The combination of hydralazine and isosorbide dinitrate is recommended to reduce morbidity and mortality for patients self-described as African Americans with NYHA class III–IV HF receiving optimal therapy with ACE inhibitors and beta blockers, unless contraindicated.179,180 (Level of Evidence: A)

Class IIa

1. A combination of hydralazine and isosorbide dinitrate can be useful to reduce morbidity or mortality in patients with current or prior symptomatic HFrEF who cannot be given an ACE inhibitor or ARB because
of drug intolerance, hypotension, or renal insufficiency, unless contraindicated.188 (Level of Evidence: B)

See Table 13 for a summary of the treatment benefit of GDMT in HFrEF.

6.3.2.7. Digoxin

Class IIa

1. Digoxin can be beneficial in patients with HFrEF, unless contraindicated, to decrease hospitalizations for HF.202-209 (Level of Evidence: B)

Table 11. Drugs Commonly Used for Stage C HFrEF

<table>
<thead>
<tr>
<th>Drug</th>
<th>Initial Daily Dose(s)</th>
<th>Maximum Dose(s)</th>
<th>Mean Doses Achieved in Clinical Trials</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACE inhibitors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Captopril</td>
<td>6.25 mg 3 times</td>
<td>50 mg 3 times</td>
<td>122.7 mg/d178</td>
</tr>
<tr>
<td>Enalapril</td>
<td>2.5 mg twice</td>
<td>10 to 20 mg twice</td>
<td>16.6 mg/d168</td>
</tr>
<tr>
<td>Fosinopril</td>
<td>5 to 10 mg once</td>
<td>40 mg once</td>
<td>N/A</td>
</tr>
<tr>
<td>Lisinopril</td>
<td>2.5 to 5 mg once</td>
<td>20 to 40 mg once</td>
<td>32.5 to 35.0 mg/d183</td>
</tr>
<tr>
<td>Perindopril</td>
<td>2 mg once</td>
<td>8 to 16 mg once</td>
<td>N/A</td>
</tr>
<tr>
<td>Quinapril</td>
<td>5 mg twice</td>
<td>20 mg twice</td>
<td>N/A</td>
</tr>
<tr>
<td>Ramipril</td>
<td>1.25 to 2.5 mg once</td>
<td>10 mg once</td>
<td>N/A</td>
</tr>
<tr>
<td>Trandolapril</td>
<td>1 mg once</td>
<td>4 mg once</td>
<td>N/A</td>
</tr>
<tr>
<td>ARBs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candesartan</td>
<td>4 to 8 mg once</td>
<td>32 mg once</td>
<td>24 mg/d176</td>
</tr>
<tr>
<td>Losartan</td>
<td>25 to 50 mg once</td>
<td>50 to 150 mg once</td>
<td>129 mg/d172</td>
</tr>
<tr>
<td>Valsoartan</td>
<td>20 to 40 mg twice</td>
<td>160 mg twice</td>
<td>254 mg/d173</td>
</tr>
<tr>
<td>Aldosterone antagonists</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spironolactone</td>
<td>12.5 to 25.0 mg once</td>
<td>25 mg once or twice</td>
<td>26 mg/d181</td>
</tr>
<tr>
<td>Eplerenone</td>
<td>25 mg once</td>
<td>50 mg once</td>
<td>42.6 mg/d184</td>
</tr>
<tr>
<td>Beta blockers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bisoprolol</td>
<td>1.25 mg once</td>
<td>10 mg once</td>
<td>8.6 mg/d185</td>
</tr>
<tr>
<td>Carvedilol</td>
<td>3.125 mg twice</td>
<td>50 mg twice</td>
<td>37 mg/d186</td>
</tr>
<tr>
<td>Carvedilol CR</td>
<td>10 mg once</td>
<td>80 mg once</td>
<td>N/A</td>
</tr>
<tr>
<td>Metoprolol succinate extended release (metoprolol CR/XL)</td>
<td>12.5 to 25.0 mg once</td>
<td>200 mg once</td>
<td>159 mg/d187</td>
</tr>
<tr>
<td>Hydralazine and isosorbide dinitrate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed-dose combination190</td>
<td>37.5 mg hydralazine/ 20 mg isosorbide dinitrate 3 times daily</td>
<td>75 mg hydralazine/40 mg isosorbide dinitrate 3 times daily</td>
<td>175 mg hydralazine/90 mg isosorbide dinitrate daily</td>
</tr>
<tr>
<td>Hydralazine and isosorbide dinitrate194</td>
<td>Hydralazine: 25 to 50 mg, 3 or 4 times daily and isosorbide dinitrate: 20 to 30 mg 3 or 4 times daily</td>
<td>Hydralazine: 300 mg daily in divided doses and isosorbide dinitrate: 120 mg daily in divided doses</td>
<td>N/A</td>
</tr>
</tbody>
</table>

ACE indicates angiotensin-converting enzyme; ARB, angiotensin-receptor blocker; CR, controlled release; CR/XL, controlled release/extended release; HFrEF, heart failure with reduced ejection fraction; and N/A, not applicable.

Table 12. Drug Dosing for Aldosterone Receptor Antagonists

<table>
<thead>
<tr>
<th>eGFR (mL/min/1.73 m2)</th>
<th>Eplerenone</th>
<th>Spironolactone</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥50</td>
<td>25 mg once daily</td>
<td>25 mg once daily</td>
</tr>
<tr>
<td>30 to 49</td>
<td>25 mg once every other day</td>
<td>12.5 to 25.0 mg once daily</td>
</tr>
<tr>
<td>≥50</td>
<td>12.5 mg once daily or every other day</td>
<td>12.5 mg once daily or every other day</td>
</tr>
<tr>
<td>Maintenance dose (after 4 wk for K+ <5 mEq/L)a</td>
<td>50 mg once daily</td>
<td>25 mg once or twice daily</td>
</tr>
</tbody>
</table>

aAfter dose initiation for K+, increase \textless 6.0 mEq/L, or worsening renal function, hold until K+ <5.0 mEq/L. Consider restarting reduced dose after confirming resolution of hyperkalemia/renal insufficiency for at least 72 h.

eGFR indicates estimated glomerular filtration rate; and K+, potassium.

Adapted from Butler et al.210
2. The selection of an anticoagulant agent (warfarin, dabigatran, apixaban, or rivaroxaban) for permanent/persistent/paroxysmal AF should be individualized on the basis of risk factors, cost, tolerability, patient preference, potential for drug interactions, and other clinical characteristics, including time in the international normalized ratio therapeutic range if the patient has been taking warfarin. (Level of Evidence: C)

Class IIa

1. Chronic anticoagulation is reasonable for patients with chronic HF who have permanent/persistent/paroxysmal AF but are without an additional risk factor for cardioembolic stroke.211-213,217-219 (Level of Evidence: B)

Class III: No Benefit

1. Anticoagulation is not recommended in patients with chronic HFpEF without AF, a prior thromboembolic event, or a cardioembolic source.220-222 (Level of Evidence: B)

6.3.2.8.2. Statins

Class III: No Benefit

1. Statins are not beneficial as adjunctive therapy when prescribed solely for the diagnosis of HF in the absence of other indications for their use.223-228 (Level of Evidence: A)

6.3.2.8.3. Omega-3 Fatty Acids

Class IIa

1. Omega-3 polyunsaturated fatty acid supplementation is reasonable to use as adjunctive therapy in patients with NYHA class II–IV symptoms and HFrEF or HFpEF, unless contraindicated, to reduce mortality and cardiovascular hospitalizations.239,240 (Level of Evidence: B)

6.3.2.9. Drugs of Unproven Value or That May Worsen HF

Class III: No Benefit

1. Nutritional supplements as treatment for HF are not recommended in patients with current or prior symptoms of HFrEF.231,232 (Level of Evidence: B)

2. Hormonal therapies other than to correct deficiencies are not recommended for patients with current or prior symptoms of HFrEF. (Level of Evidence: C)

Class III: Harm

1. Drugs known to adversely affect the clinical status of patients with current or prior symptoms of HFrEF are potentially harmful and should be avoided or withdrawn whenever possible (eg, most antiarrhythmic drugs, most calcium channel–blocking drugs [except amlodipine], nonsteroidal anti-inflammatory drugs, or thiazolidinediones).233-244 (Level of Evidence: B)

2. Long-term use of infused positive inotropic drugs is potentially harmful for patients with HFrEF, except as palliation for patients with end-stage disease who cannot be stabilized with standard medical treatment (see recommendations for stage D). (Level of Evidence: C)

6.3.2.9.1. Calcium Channel Blockers

Class III: No Benefit

1. Calcium channel–blocking drugs are not recommended as routine treatment for patients with HFrEF.238,245,246 (Level of Evidence: A)

See Table 14 for a summary of recommendations from this section and Table 15 for strategies for achieving optimal GDMT.

6.3.3. Pharmacological Treatment for Stage C HFpEF

See Table 16 for a summary of recommendations from this section.

Class I

1. Systolic and diastolic blood pressure should be controlled in patients with HFpEF in accordance with published clinical practice guidelines to prevent morbidity.28,247 (Level of Evidence: B)

2. Diuretics should be used for relief of symptoms due to volume overload in patients with HFpEF. (Level of Evidence: C)

Class IIa

1. Coronary revascularization is reasonable in patients with CAD in whom symptoms (angina) or demonstrable myocardial ischemia is judged to be having an adverse effect on symptomatic HFpEF despite GDMT. (Level of Evidence: C)

*In the absence of contraindications to anticoagulation.
<table>
<thead>
<tr>
<th>Recommendations</th>
<th>COR</th>
<th>LOE</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diuretics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diuretics are recommended in patients with HF/rEF with fluid retention</td>
<td>I</td>
<td>C</td>
<td>N/A</td>
</tr>
<tr>
<td>ACE inhibitors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACE inhibitors are recommended for all patients with HF/rEF</td>
<td>I</td>
<td>A</td>
<td>134, 167–168</td>
</tr>
<tr>
<td>ARBs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARBs are recommended in patients with HF/rEF who are ACE inhibitor intolerant</td>
<td>I</td>
<td>A</td>
<td>136, 170, 171, 189</td>
</tr>
<tr>
<td>ARBs are reasonable as alternatives to ACE inhibitors as first-line therapy in HF/rEF</td>
<td>IIa</td>
<td>A</td>
<td>190–195</td>
</tr>
<tr>
<td>Addition of an ARB may be considered in persistently symptomatic patients</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>with HF/rEF on GDMT</td>
<td>IIb</td>
<td>A</td>
<td>176, 196</td>
</tr>
<tr>
<td>Routine combined use of an ACE inhibitor, ARB, and aldosterone antagonist is potentially harmful</td>
<td>III: Harm</td>
<td>C</td>
<td>N/A</td>
</tr>
<tr>
<td>Beta blockers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use of 1 of the 3 beta blockers proven to reduce mortality is recommended for all stable patients</td>
<td>I</td>
<td>A</td>
<td>137, 172–175, 187</td>
</tr>
<tr>
<td>Aldosterone receptor antagonists</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aldosterone receptor antagonists are recommended in patients with NYHA class II–IV who have LVEF ≤35%</td>
<td>I</td>
<td>A</td>
<td>181, 182, 197</td>
</tr>
<tr>
<td>Aldosterone receptor antagonists are recommended in patients following an acute MI who have LVEF ≤40% with symptoms of HF or DM</td>
<td>I</td>
<td>B</td>
<td>184</td>
</tr>
<tr>
<td>Inappropriate use of aldosterone receptor antagonists may be harmful</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydralazine and isosorbide dinitrate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The combination of hydralazine and isosorbide dinitrate is recommended for African Americans with NYHA class II–IV HF/rEF on GDMT</td>
<td>I</td>
<td>A</td>
<td>179, 180</td>
</tr>
<tr>
<td>A combination of hydralazine and isosorbide dinitrate can be useful in patients with HF/rEF who cannot be given ACE inhibitors or ARBs</td>
<td>I</td>
<td>B</td>
<td>188</td>
</tr>
<tr>
<td>Digoxin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digoxin can be beneficial in patients with HF/rEF</td>
<td>IIa</td>
<td>B</td>
<td>202–209</td>
</tr>
<tr>
<td>Anticoagulation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patients with chronic HF with permanent/persistent/paroxysmal AF and an additional risk factor for cardioembolic stroke should receive chronic anticoagulant therapy*</td>
<td>I</td>
<td>A</td>
<td>210–216</td>
</tr>
<tr>
<td>The selection of an anticoagulant agent should be individualized</td>
<td>I</td>
<td>C</td>
<td>N/A</td>
</tr>
<tr>
<td>Chronic anticoagulation is reasonable for patients with chronic HF who have permanent/ persistent/paroxysmal AF but are without an additional risk factor for cardioembolic stroke*</td>
<td>I</td>
<td>B</td>
<td>211–213, 217–219</td>
</tr>
<tr>
<td>Anticoagulation is not recommended in patients with chronic HF/rEF without AF, a prior thromboembolic event, or a cardioembolic source</td>
<td>III: No Benefit</td>
<td>B</td>
<td>220–222</td>
</tr>
<tr>
<td>Statins</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statins are not beneficial as adjunctive therapy when prescribed solely for HF</td>
<td>III: No Benefit</td>
<td>A</td>
<td>223–228</td>
</tr>
<tr>
<td>Omega-3 fatty acids</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Omega-3 PUFA supplementation is reasonable to use as adjunctive therapy in HF/rEF or HF/rEF patients</td>
<td>I</td>
<td>B</td>
<td>229, 230</td>
</tr>
<tr>
<td>Other drugs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nutritional supplements as treatment for HF are not recommended in HF/rEF</td>
<td>III: No Benefit</td>
<td>B</td>
<td>231, 232</td>
</tr>
<tr>
<td>Hormonal therapies other than to correct deficiencies are not recommended in HF/rEF</td>
<td>III: No Benefit</td>
<td>C</td>
<td>N/A</td>
</tr>
<tr>
<td>Drugs known to adversely affect the clinical status of patients with HF/rEF are potentially harmful and should be avoided or withdrawn</td>
<td>III: Harm</td>
<td>B</td>
<td>233–244</td>
</tr>
<tr>
<td>Long-term use of an infusion of a positive inotropic drug is not recommended and may be harmful except as palliation</td>
<td>III: Harm</td>
<td>C</td>
<td>N/A</td>
</tr>
<tr>
<td>Calcium channel blockers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium channel–blocking drugs are not recommended as routine treatment in HF/rEF</td>
<td>III: No Benefit</td>
<td>A</td>
<td>238, 245, 246</td>
</tr>
</tbody>
</table>

*In the absence of contraindications to anticoagulation.

ACE indicates angiotensin-converting enzyme; AF, atrial fibrillation; ARB, angiotensin-receptor blocker; COR, Class of Recommendation; DM, diabetes mellitus; GDMT, guideline-directed medical therapy; HF, heart failure; HF/rEF, heart failure with preserved ejection fraction; HF/rEF, heart failure with reduced ejection fraction; LOE, Level of Evidence; LVEF, left ventricular ejection fraction; MI, myocardial infarction; N/A, not available; NYHA, New York Heart Association; and PUFA, polyunsaturated fatty acids.
2. Management of AF according to published clinical practice guidelines in patients with HFpEF is reasonable to improve symptomatic HF. (Level of Evidence: C)

3. The use of beta-blocking agents, ACE inhibitors, and ARBs in patients with hypertension is reasonable to control blood pressure in patients with HFpEF. (Level of Evidence: C)

Class IIb

1. The use of ARBs might be considered to decrease hospitalizations for patients with HFpEF. (Level of Evidence: B)

Class III: No Benefit

1. Routine use of nutritional supplements is not recommended for patients with HFpEF. (Level of Evidence: C)

6.3.4. Device Therapy for Stage C HFpEF

See Table 17 for a summary of recommendations from this section.

Class I

1. ICD therapy is recommended for primary prevention of sudden cardiac death to reduce total mortality in selected patients with nonischemic dilated cardiomyopathy or ischemic heart disease at least

Table 15. Strategies for Achieving Optimal GDMT

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>COR</th>
<th>LOE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uptitrate in small increments to the recommended target dose or the highest tolerated dose for those medications listed in Table 11 with an appreciation that some patients cannot tolerate the full recommended doses of all medications, particularly patients with low baseline heart rate or blood pressure or with a tendency to postural symptoms.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Certain patients (eg, the elderly, patients with chronic kidney disease) may require more frequent visits and laboratory monitoring during dose titration and more gradual dose changes. However, such vulnerable patients may accrue considerable benefits from GDMT. Inability to tolerate optimal doses of GDMT may change after disease-modifying interventions such as CRT.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitor vital signs closely before and during uptitration, including postural changes in blood pressure or heart rate, particularly in patients with orthostatic symptoms, bradycardia, and/or “low” systolic blood pressure (eg, 80 to 100 mm Hg).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternate adjustments of different medication classes (especially ACE inhibitors/ARBs and beta blockers) listed in Table 11. Patients with elevated or normal blood pressure and heart rate may tolerate faster incremental increases in dosages.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitor renal function and electrolytes for rising creatinine and hyperkalemia, recognizing that an initial rise in creatinine may be expected and does not necessarily require discontinuation of therapy; discuss tolerable levels of creatinine above baseline with a nephrologist if necessary.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patients may complain of symptoms of fatigue and weakness with dosage increases; in the absence of instability in vital signs, reassure them that these symptoms are often transient and usually resolve within a few days of changes in therapy.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discourage sudden spontaneous discontinuation of GDMT medications by the patient and/or other clinicians without discussion with managing clinicians.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carefully review doses of other medications for HF symptom control (eg, diuretics, nitrates) during uptitration.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consider temporary adjustments in dosages of GDMT during acute episodes of noncardiac illnesses (eg, respiratory infections, risk of dehydration, etc).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Educate patients, family members, and other clinicians about the expected benefits of achieving GDMT, including an understanding of the potential benefits of myocardial reverse remodeling, increased survival, and improved functional status and HRQOL.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ACE indicates angiotensin-converting enzyme; ARB, angiotensin-receptor blocker; CRT, cardiac resynchronization therapy; GDMT, guideline-directed medical therapy; HF, heart failure; and HRQOL, health-related quality of life.

Table 16. Recommendations for Treatment of HFpEF

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>COR</th>
<th>LOE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systolic and diastolic blood pressure should be controlled according to published clinical practice guidelines</td>
<td>I</td>
<td>B28,247</td>
</tr>
<tr>
<td>Diuretics should be used for relief of symptoms due to volume overload</td>
<td>I</td>
<td>C</td>
</tr>
<tr>
<td>Coronary revascularization for patients with CAD in whom angina or demonstrable myocardial ischemia is present despite GDMT</td>
<td>IIA</td>
<td>C</td>
</tr>
<tr>
<td>Management of AF according to published clinical practice guidelines for HFpEF to improve symptomatic HF</td>
<td>IIA</td>
<td>C</td>
</tr>
<tr>
<td>Use of beta-blocking agents, ACE inhibitors, and ARBs for hypertension in HFpEF</td>
<td>IIA</td>
<td>C</td>
</tr>
<tr>
<td>ARBs might be considered to decrease hospitalizations in HFpEF</td>
<td>IIb</td>
<td>B248</td>
</tr>
<tr>
<td>Nutritional supplementation is not recommended in HFpEF</td>
<td>III: No Benefit</td>
<td>C</td>
</tr>
</tbody>
</table>

ACE indicates angiotensin-converting enzyme; AF, atrial fibrillation; ARB, angiotensin-receptor blocker; CAD, coronary artery disease; COR, Class of Recommendation; GDMT, guideline-directed medical therapy; HF, heart failure; HFpEF, heart failure with preserved ejection fraction; and LOE, Level of Evidence.
Table 17. Recommendations for Device Therapy for Management of Stage C HF

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>COR</th>
<th>LOE</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICD therapy is recommended for primary prevention of SCD in selected patients with HF/EF, who are expected to live >1 y*</td>
<td>I</td>
<td>A</td>
<td>148, 249</td>
</tr>
<tr>
<td>CRT is indicated for patients who have LVEF ≤35%, sinus rhythm, and LBBB with a QRS ≥150 ms, and NYHA class II, III, or ambulatory IV symptoms on GDMT</td>
<td>I</td>
<td>A</td>
<td>(NYHA class III/IV) 37, 250–252, 253, 254</td>
</tr>
<tr>
<td>ICD therapy is recommended for primary prevention of SCD in selected patients with HF/EF, who are expected to live >1 y*</td>
<td>I</td>
<td>B</td>
<td>255–257</td>
</tr>
<tr>
<td>CRT can be useful for patients who have LVEF ≤35%, sinus rhythm, a non-LBBB pattern with a QRS ≥150 ms, and NYHA class III/ambulatory class IV symptoms on GDMT</td>
<td>IIa</td>
<td>A</td>
<td>250–252, 254</td>
</tr>
<tr>
<td>CRT can be useful for patients with AF and LVEF ≤35% on GDMT if a) the patient requires ventricular pacing or otherwise meets CRT criteria and b) AV nodal ablation or rate control allows near 100% ventricular pacing with CRT</td>
<td>IIa</td>
<td>B</td>
<td>259–264</td>
</tr>
<tr>
<td>CRT can be useful for patients on GDMT who have LVEF ≤35% and are undergoing new or replacement device implantation with anticipated ventricular pacing (>40%)</td>
<td>IIa</td>
<td>C</td>
<td>261, 265–267</td>
</tr>
<tr>
<td>An ICD is of uncertain benefit to prolong meaningful survival in patients with a high risk of nonsudden death such as frequent hospitalizations, frailty, or severe comorbidities*</td>
<td>IIb</td>
<td>B</td>
<td>268–271</td>
</tr>
<tr>
<td>CRT may be considered for patients who have LVEF ≤35%, sinus rhythm, a non-LBBB pattern with a QRS 120 to 149 ms, and NYHA class II, III, or ambulatory IV symptoms on GDMT</td>
<td>IIb</td>
<td>B</td>
<td>254, 272</td>
</tr>
<tr>
<td>CRT may be considered for patients who have LVEF ≤35%, sinus rhythm, a non-LBBB pattern with a QRS ≥150 ms, and NYHA class II symptoms on GDMT</td>
<td>IIb</td>
<td>B</td>
<td>253, 254</td>
</tr>
<tr>
<td>CRT may be considered for patients who have LVEF ≤35%, ischemic etiology of HF, sinus rhythm, LBBB with QRS ≥150 ms, and NYHA class I symptoms on GDMT</td>
<td>IIb</td>
<td>C</td>
<td>253, 254</td>
</tr>
<tr>
<td>CRT is not recommended for patients with NYHA class I or II symptoms and a non-LBBB pattern with QRS <150 ms</td>
<td>III: No Benefit</td>
<td>B</td>
<td>253, 254, 272</td>
</tr>
<tr>
<td>CRT is not indicated for patients whose comorbidities and/or frailty limit survival to <1 y</td>
<td>III: No Benefit</td>
<td>C</td>
<td>37</td>
</tr>
</tbody>
</table>

*Counseling should be specific to each individual patient and should include documentation of a discussion about the potential for sudden death and nonsudden death from HF or noncardiac conditions. Information should be provided about the efficacy, safety, and potential complications of an ICD and the potential for defibrillation to be inactivated if desired in the future, notably when a patient is approaching end of life. This will facilitate shared decision making between patients, families, and the medical care team about ICDs.31

AF indicates atrial fibrillation; AV, atrioventricular; COR, Class of Recommendation; CRT, cardiac resynchronization therapy; GDMT, guideline-directed medical therapy; HF, heart failure; HF/EF, heart failure with reduced ejection fraction; ICD, implantable cardioverter-defibrillator; LBBB, left bundle-branch block; LOE, Level of Evidence; LVEF, left ventricular ejection fraction; MI, myocardial infarction; NYHA, New York Heart Association; and SCD, sudden cardiac death.

40 days post-MI with LVEF of 35% or less and NYHA class II or III symptoms on chronic GDMT, who have reasonable expectation of meaningful survival for more than 1 year.†148,249 (Level of Evidence: A)

2. Cardiac resynchronization therapy (CRT) is indicated for patients who have LVEF of 35% or less, sinus rhythm, left bundle-branch block (LBBB) with a QRS duration of 150 ms or greater, and NYHA class II, III, or ambulatory IV symptoms on GDMT. (Level of Evidence: A for NYHA class III/IV37,258–252; Level of Evidence: B for NYHA class II253,254)

3. ICD therapy is recommended for primary prevention of sudden cardiac death to reduce total mortality in selected patients at least 40 days post-MI with LVEF of 30% or less and NYHA class I symptoms while receiving GDMT, who have reasonable expectation of meaningful survival for more than 1 year.†255–257 (Level of Evidence: B)

Class IIa

1. CRT can be useful for patients who have LVEF of 35% or less, sinus rhythm, a non-LBBB pattern with a QRS duration of 150 ms or greater, and NYHA class III/ambulatory class IV symptoms on GDMT.258–252,254 (Level of Evidence: A)

2. CRT can be useful for patients who have LVEF of 35% or less, sinus rhythm, LBBB with a QRS duration of 120 to 149 ms, and NYHA class II, III, or ambulatory IV symptoms on GDMT.258–254,258 (Level of Evidence: B)

3. CRT can be useful in patients with AF and LVEF of 35% or less on GDMT if a) the patient requires
ventricular pacing or otherwise meets CRT criteria and b) atrioventricular nodal ablation or pharmacological rate control will allow near 100% ventricular pacing with CRT. (Level of Evidence: C)

4. CRT may be useful for patients on GDMT who have LVEF of 35% or less and are undergoing placement of a new or replacement device implantation with anticipated requirement for significant (>40%) ventricular pacing. (Level of Evidence: C)

Class IIIb

1. The usefulness of implantation of an ICD is of uncertain benefit to prolong meaningful survival in patients with a high risk of nonsudden death as predicted by frequent hospitalizations, advanced frailty, or comorbidities such as systemic malignancy or severe renal dysfunction. (Level of Evidence: B)

2. CRT may be considered for patients who have LVEF of 35% or less, sinus rhythm, a non-LBBB pattern with a QRS duration of 120 to 149 ms, and NYHA class III/ambulatory class IV on GDMT. (Level of Evidence: B)

3. CRT may be considered for patients who have LVEF of 35% or less, sinus rhythm, a non-LBBB pattern with a QRS duration of 150 ms or greater, and NYHA class II symptoms on GDMT. (Level of Evidence: B)

4. CRT may be considered for patients who have LVEF of 30% or less, ischemic etiology of HF, sinus rhythm, LBBB with a QRS duration of 150 ms or greater, and NYHA class I symptoms on GDMT. (Level of Evidence: C)

Class III: No Benefit

1. CRT is not recommended for patients with NYHA class I or II symptoms and non-LBBB pattern with a QRS duration of less than 150 ms. (Level of Evidence: B)

2. CRT is not indicated for patients whose comorbidities and/or frailty limit survival with good functional capacity to less than 1 year. (Level of Evidence: C)

See Figure 2, indications for CRT therapy algorithm.

6.4. Stage D

See Table 18 for the European Society of Cardiology definition of advanced HF and Table 19 for clinical events and findings useful for identifying patients with advanced HF.
Table 18. ESC Definition of Advanced HF

1. Severe symptoms of HF with dyspnea and/or fatigue at rest or with minimal exertion (NYHA class III or IV)
2. Episodes of fluid retention (pulmonary and/or systemic congestion, peripheral edema) and/or reduced cardiac output at rest (peripheral hypoperfusion)
3. Objective evidence of severe cardiac dysfunction shown by at least 1 of the following:
 a. LVEF <30%
 b. Pseudonormal or restrictive mitral inflow pattern
 c. Mean PCWP >16 mm Hg and/or RAP >12 mm Hg by PA catheterization
 d. High BNP or NT-proBNP plasma levels in the absence of noncardiac causes
4. Severe impairment of functional capacity shown by 1 of the following:
 a. Inability to exercise
 b. 6-Minute walk distance ≤300 m
 c. Peak VO2 <12 to 14 mL/kg/min
5. History of ≥1 HF hospitalization in past 6 mo
6. Presence of all the previous features despite “attempts to optimize” therapy, including diuretics and GDMT, unless these are poorly tolerated or contraindicated, and CRT when indicated

BNP indicates B-type natriuretic peptide; CRT, cardiac resynchronization therapy; ESC, European Society of Cardiology; GDMT, guideline-directed medical therapy; HF, heart failure; LVEF, left ventricular ejection fraction; NT-proBNP, N-terminal pro-B-type natriuretic peptide; NYHA, New York Heart Association; PA, pulmonary artery; PCWP, pulmonary capillary wedge pressure; and RAP, right atrial pressure.

Adapted from Metra et al.33

6.4.1. Water Restriction

Class IIa

1. Fluid restriction (1.5 to 2 L/d) is reasonable in stage D, especially in patients with hyponatremia, to reduce congestive symptoms. (Level of Evidence: C)

6.4.2. Inotropic Support

See Table 20 for inotropic agents used in HF management and Table 21 for a summary of recommendations from this section.

Class I

1. Until definitive therapy (eg, coronary revascularization, MCS, heart transplantation) or resolution of the acute precipitating problem, patients with cardiogenic shock should receive temporary intravenous inotropic support to maintain systemic perfusion and preserve end-organ performance. (Level of Evidence: C)

Table 19. Clinical Events and Findings Useful for Identifying Patients With Advanced HF

<table>
<thead>
<tr>
<th>Event</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repeated (≥2) hospitalizations or ED visits for HF in the past year</td>
<td></td>
</tr>
<tr>
<td>Progressive deterioration in renal function (eg, rise in BUN and creatinine)</td>
<td></td>
</tr>
<tr>
<td>Weight loss without other cause (eg, cardiac cachexia)</td>
<td></td>
</tr>
<tr>
<td>Intolerance to ACE inhibitors due to hypotension and/or worsening renal function</td>
<td></td>
</tr>
<tr>
<td>Intolerance to beta blockers due to worsening HF or hypotension</td>
<td></td>
</tr>
<tr>
<td>Frequent systolic blood pressure <90 mm Hg</td>
<td></td>
</tr>
<tr>
<td>Persistent dyspnea with dressing or bathing requiring rest</td>
<td></td>
</tr>
<tr>
<td>Inability to walk 1 block on the level ground due to dyspnea or fatigue</td>
<td></td>
</tr>
<tr>
<td>Recent need to escalate diuretics to maintain volume status, often reaching daily furosemide equivalent dose over 160 mg/d and/or use of supplemental metolazone therapy</td>
<td></td>
</tr>
<tr>
<td>Progressive decline in serum sodium, usually to <133 mEq/L</td>
<td></td>
</tr>
<tr>
<td>Frequent ICD shocks</td>
<td></td>
</tr>
</tbody>
</table>

ACE indicates angiotensin-converting enzyme; BUN, blood urea nitrogen; ED, emergency department; HF, heart failure; and ICD, implantable cardioverter-defibrillator.

Adapted from Russell et al.274

support to maintain systemic perfusion and preserve end-organ performance. (Level of Evidence: C)

Class IIa

1. Continuous intravenous inotropic support is reasonable as “bridge therapy” in patients with stage D HF refractory to GDMT and device therapy who are eligible for and awaiting MCS or cardiac transplantation.275,276 (Level of Evidence: B)

Class IIb

1. Short-term, continuous intravenous inotropic support may be reasonable in those hospitalized patients presenting with documented severe systolic dysfunction who present with low blood pressure and significantly depressed cardiac output to maintain systemic perfusion and preserve end-organ performance.277–279 (Level of Evidence: B)

2. Long-term, continuous intravenous inotropic support may be considered as palliative therapy for

Table 20. Intravenous Inotropic Agents Used in Management of HF

<table>
<thead>
<tr>
<th>Inotropic Agent</th>
<th>Dose (mcg/kg)</th>
<th>Drug Kinetics and Metabolism</th>
<th>Effects</th>
<th>Adverse Effects</th>
<th>Special Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adrenergic agonists</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dopamine</td>
<td>N/A</td>
<td>5 to 10</td>
<td>t½: 2 to 20 min</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>N/A</td>
<td>10 to 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dobutamine</td>
<td>N/A</td>
<td>2.5 to 5</td>
<td>t½: 2 to 3 min</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>N/A</td>
<td>5 to 20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDE inhibitor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milrinone</td>
<td>N/R</td>
<td>0.125 to 0.75</td>
<td>t½: 2.5 h H</td>
<td>↑</td>
<td>↑</td>
</tr>
</tbody>
</table>

BP indicates blood pressure; CI, contraindication; CO, cardiac output; F, fever; H, hepatic; HA, headache; HF, heart failure; HR, heart rate; LFT, liver function test; MAO-I, monoamine oxidase inhibitor; N, nausea; N/A, not applicable; N/R, not recommended; P, plasma; PDE, phosphodiesterase; PVR, pulmonary vascular resistance; R, renal; SVR, systemic vascular resistance; T, tachyarrhythmias; and t½, elimination half-life.

Yancy et al 2013 ACCF/AHA Heart Failure Guideline: Executive Summary
symptom control in select patients with stage D HF despite optimal GDMT and device therapy who are not eligible for either MCS or cardiac transplantation.280–282 (Level of Evidence: B)

Class III: Harm

1. Long-term use of either continuous or intermittent, intravenous parenteral positive inotropic agents, in the absence of specific indications or for reasons other than palliative care, is potentially harmful in the patient with HF.172,283–288 (Level of Evidence: B)

2. Use of parenteral inotropic agents in hospitalized patients without documented severe systolic dysfunction, low blood pressure, or impaired perfusion and evidence of significantly depressed cardiac output, with or without congestion, is potentially harmful.277–279 (Level of Evidence: B)

6.4.3. Mechanical Circulatory Support

Class IIa

1. MCS is beneficial in carefully selected† patients with stage D HF in whom definitive management (eg, cardiac transplantation) is anticipated or planned.289–296 (Level of Evidence: B)

2. Nondurable MCS is reasonable as a “bridge to recovery” or a “bridge to decision” for carefully selected† patients with HF and acute profound disease.297–300 (Level of Evidence: B)

3. Durable MCS is reasonable to prolong survival for carefully selected† patients with stage D HF.301–304 (Level of Evidence: B)

6.4.4. Cardiac Transplantation

Class I

1. Evaluation for cardiac transplantation is indicated for carefully selected patients with stage D HF despite GDMT, device, and surgical management.305 (Level of Evidence: B)

See Figure 3 for the stages in the development of HF.

†Although optimal patient selection for MCS remains an active area of investigation, general indications for referral for MCS therapy include patients with LVEF <25% and NYHA class III–IV functional status despite GDMT, including, when indicated, CRT, with either high predicted 1- to 2-year mortality (eg, as suggested by markedly reduced peak oxygen consumption and clinical prognostic scores) or dependence on continuous parenteral inotropic support. Patient selection requires a multidisciplinary team of experienced advanced HF and transplantation cardiologists, cardiothoracic surgeons, nurses, and ideally, social workers and palliative care clinicians.

BTT indicates bridge to transplant; COR, Class of Recommendation; CRT, cardiac resynchronization therapy; GDMT, guideline-directed medical therapy; HF, heart failure; HFrEF, heart failure with reduced ejection fraction; LOE, Level of Evidence; LVEF, left ventricular ejection fraction; MCS, mechanical circulatory support; N/A, not applicable; and NYHA, New York Heart Association.
7. The Hospitalized Patient: Recommendations

See Table 22 for a summary of recommendations from this section and Figure 4 for the classification of patients presenting with acutely decompensated HF.

7.1. Precipitating Causes of Decompensated HF

Class I

1. ACS precipitating acute HF decompensation should be promptly identified by electrocardiogram and serum biomarkers, including cardiac troponin testing, and treated optimally as appropriate to the overall condition and prognosis of the patient. (Level of Evidence: C)

2. Common precipitating factors for acute HF should be considered during initial evaluation, as recognition of these conditions is critical to guide appropriate therapy. (Level of Evidence: C)

7.2. Maintenance of GDMT During Hospitalization

Class I

1. In patients with HFrEF experiencing a symptomatic exacerbation of HF requiring hospitalization during chronic maintenance treatment with GDMT, it is recommended that GDMT be continued in the absence of hemodynamic instability or contraindications.307–309 (Level of Evidence: B)

2. Initiation of beta-blocker therapy is recommended after optimization of volume status and successful discontinuation of intravenous diuretics, vasodilators, and inotropic agents. Beta-blocker therapy should be initiated at a low dose and only in stable patients. Caution should be used when initiating beta blockers in patients who have required inotropes during their hospital course.307–309 (Level of Evidence: B)
7.3. Diuretics in Hospitalized Patients

Class I

1. Patients with HF admitted with evidence of significant fluid overload should be promptly treated with intravenous diuretics to reduce morbidity. (Level of Evidence: B)

2. If patients are already receiving loop diuretic therapy, the initial intravenous dose should equal or exceed their chronic oral daily dose and should be given as either intermittent boluses or continuous infusion. Urine output and signs and symptoms of congestion should be serially assessed, and the diuretic dose should be adjusted accordingly to relieve symptoms, reduce volume excess, and avoid hypotension. (Level of Evidence: B)

3. The effect of HF treatment should be monitored with careful measurement of fluid intake and output, vital signs, body weight that is determined at the same time each day, and clinical signs and symptoms of systemic perfusion and congestion. Daily serum electrolytes, urea nitrogen, and creatinine concentrations should be measured during the use of intravenous diuretics or active titration of HF medications. (Level of Evidence: C)

Class IIa

1. When diuresis is inadequate to relieve symptoms, it is reasonable to intensify the diuretic regimen using either:
 a. higher doses of intravenous loop diuretics; or
 b. addition of a second (eg, thiazide) diuretic. (Level of Evidence: B)

Class IIb

1. Low-dose dopamine infusion may be considered in addition to loop diuretics to improve diuresis and better preserve renal function and renal blood flow. (Level of Evidence: B)

7.4. Renal Replacement Therapy—Ultrafiltration

Class IIb

1. Ultrafiltration may be considered for patients with obvious volume overload to alleviate congestive symptoms and fluid weight. (Level of Evidence: B)
2. Ultrafiltration may be considered for patients with refractory congestion not responding to medical therapy. *(Level of Evidence: C)*

7.5. Parenteral Therapy in Hospitalized HF

Class IIb

1. If symptomatic hypotension is absent, intravenous nitroglycerin, nitroprusside, or nesiritide may be considered an adjuvant to diuretic therapy for relief of dyspnea in patients admitted with acutely decompen-sated HF.320–323 *(Level of Evidence: A)*

7.6. Venous Thromboembolism Prophylaxis in Hospitalized Patients

Class I

1. A patient admitted to the hospital with decompen-sated HF should receive venous thromboembolism prophylaxis with an anticoagulant medication if the risk–benefit ratio is favorable.25,324-329 *(Level of Evidence: B)*

7.7. Arginine Vasopressin Antagonists

Class IIb

1. In patients hospitalized with volume overload, including HF, who have persistent severe hypona-tremia and are at risk for or having active cognitive symptoms despite water restriction and maximization of GDMT, vasopressin antagonists may be considered in the short term to improve serum sodium concentration in hypervolemic, hyponatremic states with either a V₁ receptor selective or a nonselective vasopressin antagonist.330,331 *(Level of Evidence: B)*

7.8. Inpatient and Transitions of Care

See Table 23 for a summary of recommendations from this section.

Class I

1. The use of performance improvement systems and/or evidence-based systems of care is recommended in the hospital and early postdischarge outpatient setting to identify appropriate HF patients for GDMT, provide clinicians with useful reminders to advance GDMT, and assess the clinical response.151,332–338 *(Level of Evidence: B)*

2. Throughout the hospitalization as appropriate, before hospital discharge, at the first postdischarge visit, and in subsequent follow-up visits, the following should be addressed57,337,339–341 *(Level of Evidence: B)*:
 a. initiation of GDMT if not previously established and not contraindicated;
 b. precipitant causes of HF, barriers to optimal care transitions, and limitations in postdischarge support;
 c. assessment of volume status and blood pressure with adjustment of HF therapy;
 d. optimization of chronic oral HF therapy;
 e. renal function and electrolytes;
 f. management of comorbid conditions;
 g. HF education, self-care, emergency plans, and adherence; and
 h. palliative or hospice care

3. Multidisciplinary HF disease-management programs are recommended for patients at high risk for hospital readmission, to facilitate the implementation of GDMT, to address different barriers to behavioral change, and to reduce the risk of subsequent rehospitalization for HF.336,342–344 *(Level of Evidence: B)*
Class IIa

1. Scheduling an early follow-up visit (within 7 to 14 days) and early telephone follow-up (within 3 days) of hospital discharge are reasonable.345,346 (Level of Evidence: B)

2. Use of clinical risk-prediction tools and/or biomarkers to identify patients at higher risk for postdischarge clinical events are reasonable.62 (Level of Evidence: B)

8. Important Comorbidities in HF

Although there are additional and important comorbidities that occur in patients with HF as referenced in Table 24, it remains uncertain how best to generate specific recommendations, given the status of current evidence.

9. Surgical/Percutaneous/Transcatheter Interventional Treatments of HF: Recommendations

See Table 25 for a summary of recommendations from this section.

Class I

1. Coronary artery revascularization via coronary artery bypass graft surgery (CABG) or percutaneous

Table 24. Ten Most Common Co-Occurring Chronic Conditions Among Medicare Beneficiaries With Heart Failure (N=4,947,918), 2011

<table>
<thead>
<tr>
<th>-condition Type</th>
<th>N</th>
<th>%</th>
<th>-condition Type</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypertension</td>
<td>3685373</td>
<td>84.2</td>
<td>Hypertension</td>
<td>461235</td>
<td>80.7</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>3145718</td>
<td>71.9</td>
<td>Ischemic heart disease</td>
<td>365889</td>
<td>64.0</td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>2623601</td>
<td>60.0</td>
<td>Hyperlipidemia</td>
<td>338687</td>
<td>59.2</td>
</tr>
<tr>
<td>Anemia</td>
<td>2200674</td>
<td>50.3</td>
<td>Anemia</td>
<td>325498</td>
<td>56.9</td>
</tr>
<tr>
<td>Diabetes</td>
<td>2027875</td>
<td>46.3</td>
<td>Diabetes</td>
<td>284102</td>
<td>49.7</td>
</tr>
<tr>
<td>Arthritis</td>
<td>1901447</td>
<td>43.5</td>
<td>Arthritis</td>
<td>257015</td>
<td>45.0</td>
</tr>
<tr>
<td>Chronic kidney disease</td>
<td>1851812</td>
<td>42.3</td>
<td>Chronic kidney disease</td>
<td>207082</td>
<td>36.2</td>
</tr>
<tr>
<td>COPD</td>
<td>1311118</td>
<td>30.0</td>
<td>COPD</td>
<td>201964</td>
<td>35.3</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>1247748</td>
<td>28.5</td>
<td>Atrial fibrillation</td>
<td>191016</td>
<td>33.4</td>
</tr>
<tr>
<td>Alzheimer's disease/dementia</td>
<td>1207704</td>
<td>27.6</td>
<td>Alzheimer's disease/dementia</td>
<td>88816</td>
<td>15.5</td>
</tr>
</tbody>
</table>

*Mean No. of conditions is 6.1; median is 6.
†Mean No. of conditions is 5.5; median is 5.
COPD indicates chronic obstructive pulmonary disease.
Data source: Centers for Medicare and Medicaid Services administrative claims data, January 2011–December 2011, from the Chronic Condition Warehouse (CCW), ccwdata.org.347

Table 25. Recommendations for Surgical/Percutaneous/Transcatheter Interventional Treatments of HF

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>COR</th>
<th>LOE</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>CABG or percutaneous intervention is indicated for HF patients on GDMT with angina and suitable coronary anatomy, especially significant left main stenosis or left main equivalent</td>
<td>I</td>
<td>C</td>
<td>11, 13, 15, 348</td>
</tr>
<tr>
<td>CABG to improve survival is reasonable in patients with mild to moderate LV systolic dysfunction and significant multivessel CAD or proximal LAD stenosis when viable myocardium is present</td>
<td>IIa</td>
<td>B</td>
<td>348–350</td>
</tr>
<tr>
<td>CABG or medical therapy is reasonable to improve morbidity and mortality for patients with severe LV dysfunction (EF <35%), HF, and significant CAD</td>
<td>IIa</td>
<td>B</td>
<td>351, 352</td>
</tr>
<tr>
<td>Surgical aortic valve replacement is reasonable for patients with critical aortic stenosis and a predicted surgical mortality of no greater than 10%</td>
<td>IIa</td>
<td>B</td>
<td>353</td>
</tr>
<tr>
<td>Transcatheter aortic valve replacement is reasonable for patients with critical aortic stenosis who are deemed inoperable</td>
<td>IIa</td>
<td>B</td>
<td>354</td>
</tr>
<tr>
<td>CABG may be considered in patients with ischemic heart disease, severe LV systolic dysfunction, and operable coronary anatomy whether or not viable myocardium is present</td>
<td>IIb</td>
<td>B</td>
<td>352, 355, 356</td>
</tr>
<tr>
<td>Transcatheter mitral valve repair or mitral valve surgery for functional mitral insufficiency is of uncertain benefit</td>
<td>IIb</td>
<td>B</td>
<td>357–360</td>
</tr>
<tr>
<td>Surgical reverse remodeling or LV aneurysmectomy may be considered in HF/EF for specific indications, including intractable HF and ventricular arrhythmias</td>
<td>IIb</td>
<td>B</td>
<td>361</td>
</tr>
</tbody>
</table>

CABG indicates coronary artery bypass graft; CAD, coronary artery disease; COR, Class of Recommendation; EF, ejection fraction; GDMT, guideline-directed medical therapy; HF, heart failure; HF/EF, heart failure with reduced ejection fraction; LAD, left anterior descending; LOE, Level of Evidence; and LV, left ventricular.
intervention is indicated for patients (HFpEF and HFrEF) on GDMT with angina and suitable coronary anatomy, especially for a left main stenosis (>50%) or left main equivalent disease.11,13,14,340 (Level of Evidence: C)

Class IIa

1. CABG to improve survival is reasonable in patients with mild to moderate LV systolic dysfunction (EF 35% to 50%) and significant (≥70% diameter stenosis) multivessel CAD or proximal left anterior descending coronary artery stenosis when viable myocardium is present in the region of intended revascularization.348–350 (Level of Evidence: B)
2. CABG or medical therapy is reasonable to improve morbidity and cardiovascular mortality for patients with severe LV dysfunction (EF <35%), HF, and significant CAD.351,352 (Level of Evidence: B)
3. Surgical aortic valve replacement is reasonable for patients with critical aortic stenosis and a predicted surgical mortality of no greater than 10%.353 (Level of Evidence: B)
4. Transcatheter aortic valve replacement after careful candidate selection and with a background of GDMT.357–360 (Level of Evidence: B)

Class IIb

1. CABG may be considered with the intent of improving survival in patients with ischemic heart disease with severe LV systolic dysfunction (EF <35%) and operable coronary anatomy whether or not viable myocardium is present.352,355,356 (Level of Evidence: B)
2. Transcatheter mitral valve repair or mitral valve surgery for functional mitral insufficiency is of uncertain benefit and should only be considered after careful candidate selection and with a background of GDMT.357–360 (Level of Evidence: B)
3. Surgical reverse remodeling or LV aneurysmectomy may be considered in carefully selected patients with HFrEF for specific indications, including intractable HF and ventricular arrhythmias.361 (Level of Evidence: B)

10. Coordinating Care for Patients With Chronic HF: Recommendations

Class I

1. Effective systems of care coordination with special attention to care transitions should be deployed for every patient with chronic HF that facilitate and ensure effective care that is designed to achieve GDMT and prevent hospitalization.333,336,362–377 (Level of Evidence: B)
2. Every patient with HF should have a clear, detailed, and evidence-based plan of care that ensures the achievement of GDMT goals, effective management of comorbid conditions, timely follow-up with the healthcare team, appropriate dietary and physical activities, and compliance with secondary prevention guidelines for cardiovascular disease. This plan of care should be updated regularly and made readily available to all members of each patient’s healthcare team.14 (Level of Evidence: C)
3. Palliative and supportive care is effective for patients with symptomatic advanced HF to improve quality of life.31,378–381 (Level of Evidence: B)

11. Quality Metrics/Performance Measures: Recommendations

Class I

1. Performance measures based on professionally developed clinical practice guidelines should be used with the goal of improving quality of care for HF.334,343,382 (Level of Evidence: B)

Class IIa

1. Participation in quality improvement programs and patient registries based on nationally endorsed, clinical practice guideline–based quality and performance measures can be beneficial in improving quality of HF care.334,343 (Level of Evidence: B)

See Table 26 for a revised ACCF/AHA/PCPI 2011 HF measurement set.

12. Evidence Gaps and Future Research Directions

Despite the objective evidence compiled by the writing committee on the basis of hundreds of clinical trials, there are huge gaps in our knowledge base about many fundamental aspects of HF care. Some key examples include an effective management strategy for patients with HFpEF beyond blood pressure control; a convincing method to use biomarkers in the optimization of medical therapy; the recognition and treatment of cardiorenal syndrome; and the critical need for improving patient adherence to therapeutic regimens. Even the widely embraced dictum of sodium restriction in HF is not well supported by current evidence. Moreover, the majority of the clinical trials that inform GDMT were designed around the primary endpoint of mortality, so that there is less certainty about the impact of therapies on the health-related quality of life of patients. It is also of major concern that the majority of randomized controlled trials failed to randomize a sufficient number of the elderly, women, and underrepresented minorities, thus limiting our insight into these important patient cohorts. A growing body of studies on patient-centered outcomes research is likely to address some of these deficiencies, but time will be required.

HF is a syndrome with a high prevalence of comorbidities and multiple chronic conditions, but most guidelines are developed for patients with a single disease. Nevertheless, the coexistence of additional diseases such as arthritis, renal insufficiency, diabetes mellitus, or chronic lung disease with the HF syndrome should logically require a modification of treatment, outcome assessment, or follow-up care. About 25%
of Americans have multiple chronic conditions; this figure rises to 75% in those >65 years of age, including the diseases referred to above, as well as asthma, hypertension, cognitive disorders, or depression. Most randomized controlled trials in HF specifically excluded patients with significant other comorbidities from enrollment, thus limiting our ability to generalize our recommendations to many real-world patients. Therefore, the clinician must, as always, practice the art of using the best of the guideline recommendations as they apply to a specific patient.

Table 26. ACCF/AHA/AMA-PCPI 2011 HF Measurement Set

<table>
<thead>
<tr>
<th>Measure</th>
<th>Description*</th>
<th>Care Setting</th>
<th>Level of Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. LVEF assessment</td>
<td>Percentage of patients aged ≥18 y with a diagnosis of HF for whom the quantitative or qualitative results of a recent or prior (any time in the past) LVEF assessment is documented within a 12-mo period</td>
<td>Outpatient</td>
<td>Individual practitioner</td>
</tr>
<tr>
<td>2. LVEF assessment</td>
<td>Percentage of patients aged ≥18 y with a principal discharge diagnosis of HF with documentation in the hospital record of the results of an LVEF assessment performed either before arrival or during hospitalization, OR documentation in the hospital record that LVEF assessment is planned for after discharge</td>
<td>Inpatient</td>
<td>• Individual practitioner • Facility</td>
</tr>
<tr>
<td>3. Symptom and activity assessment</td>
<td>Percentage of patient visits for patients aged ≥18 y with a diagnosis of HF with quantitative results of an evaluation of both current level of activity and clinical symptoms documented</td>
<td>Outpatient</td>
<td>Individual practitioner</td>
</tr>
<tr>
<td>4. Symptom management†</td>
<td>Percentage of patient visits for patients aged ≥18 y with a diagnosis of HF and with quantitative results of an evaluation of both level of activity AND clinical symptoms documented in which patient symptoms have improved or remained consistent with treatment goals since last assessment OR patient symptoms have demonstrated clinically important deterioration since last assessment with a documented plan of care</td>
<td>Outpatient</td>
<td>Individual practitioner</td>
</tr>
<tr>
<td>5. Patient self-care education†‡</td>
<td>Percentage of patients aged ≥18 y with a diagnosis of HF who were provided with self-care education on ≥3 elements of education during ≥1 visits within a 12-mo period</td>
<td>Outpatient</td>
<td>Individual practitioner</td>
</tr>
<tr>
<td>6. Beta-blocker therapy for LVSD (outpatient and inpatient setting)</td>
<td>Percentage of patients aged ≥18 y with a diagnosis of HF with a current or prior LVEF <40% who were prescribed beta-blocker therapy with bisoprolol, carvedilol, or sustained-release metoprolol succinate either within a 12-mo period when seen in the outpatient setting or at hospital discharge</td>
<td>Inpatient and outpatient</td>
<td>• Individual practitioner • Facility</td>
</tr>
<tr>
<td>7. ACE inhibitor or ARB therapy for LVSD (outpatient and inpatient setting)</td>
<td>Percentage of patients aged ≥18 y with a diagnosis of HF with a current or prior LVEF <40% who were prescribed ACE inhibitor or ARB therapy either within a 12-mo period when seen in the outpatient setting or at hospital discharge</td>
<td>Inpatient and outpatient</td>
<td>• Individual practitioner • Facility</td>
</tr>
<tr>
<td>8. Counseling about ICD implantation for patients with LVSD on combination medical therapy†‡</td>
<td>Percentage of patients aged ≥18 y with a diagnosis of HF with current LVEF ≤35% despite ACE inhibitor/ARB and beta-blocker therapy for at least 3 mo who were counseled about ICD placement as a treatment option for the prophylaxis of sudden death</td>
<td>Outpatient</td>
<td>Individual practitioner</td>
</tr>
<tr>
<td>9. Postdischarge appointment for HF patients</td>
<td>Percentage of patients, regardless of age, discharged from an inpatient facility to ambulatory care or home health care with a principal discharge diagnosis of HF for whom a follow-up appointment was scheduled and documented, including location, date, and time for a follow-up office visit or home health visit (as specified)</td>
<td>Inpatient</td>
<td>Facility</td>
</tr>
</tbody>
</table>

*Refer to the complete measures for comprehensive information, including measure exception.
†Test measure designated for use in internal quality improvement programs only. These measures are not appropriate for any other purpose (eg, pay for performance, physician ranking, or public reporting programs).
‡New measure.

N.B., Regarding test measure no. 8, implantation of an ICD must be consistent with published guidelines. This measure is intended to promote counseling only.

ACCF indicates American College of Cardiology Foundation; ACE, angiotensin-converting enzyme; AHA, American Heart Association; AMA-PCPI, American Medical Association–Physician Consortium for Performance Improvement; ARB, angiotensin-receptor blocker; HF, heart failure; ICD, implantable cardioverter-defibrillator; LVEF, left ventricular ejection fraction; and LVSD, left ventricular systolic dysfunction.

Adapted from Bonow et al.383
Future research will need to focus on novel pharmacologic therapies, especially for patients hospitalized with HF; regenerative cell-based therapies to restore myocardium; and new device platforms that will either improve existing technologies (eg, CRT, ICD, left ventricular assist device) or introduce simpler, less morbid devices that are capable of changing the natural history of HF. What is critically needed is an evidence base that clearly identifies best processes of care, especially in the transition from hospital to home. Finally, preventing the burden of this disease through more successful risk modification, sophisticated screening, perhaps using specific omics technologies (ie, systems biology), or effective treatment interventions that reduce the progression from stage A to stage B is an urgent need.

References

63. Konko DO, Mandle AK, Missouris CG, et al. Disordered iron homeosta-

67. Troughton RW, Frampton CM, Yandle TG, et al. Treatment of heart fail-

69. Horwich TB, Patel J, MacLellan WR, et al. Cardiac troponin I is associ-
ated with impaired hemodynamics, progressive left ventricular dysfunc-

70. Sato Y, Yamada T, Taniguchi R, et al. Persistently increased serum concen-

72. Hudson MP, O’Connor CM, Gattis WA, et al. Implications of elevated cardiac troponin T in ambulatory patients with heart failure: a prospec-

75. Lok DJ, van der Meer P, de la Porte PW, et al. Prognostic value of galec-

80. van Kimmenade RR, Pinto YM, Bayes-Genis A, et al. Usefulness of interme-
diate amino-terminal pro-brain natriuretic peptide concentrations for diagno-

84. Cheng V, Kazanegra R, Garcia A, et al. A rapid bedside test for B-type peptide predicts treatment outcomes in patients admitted for decompen-

85. Fonarow GC, Peacock WF, Horwich TB, et al. Usefulness of B-type natriuretic peptide and cardiac troponin levels to predict in-hospital mor-

87. Maisel A, Hollander JE, Guss D, et al. Primary results of the Rapid Emergency Department Heart Failure Outpatient Trial (REDHOT): a multicenter study of B-type natriuretic peptide levels and emergency depart-
ment decision making, and outcomes in patients presenting with short-

88. Zaires MN, Tsiaousis GZ, Georgilas AT, et al. Multimarker strategy for the prediction of 31 days cardiac death in patients with acutely decomp-

Deleted in progress.

Deleted in press.

338. Phillips CO, Wright SM, Kern DE, et al. Comprehensive discharge plan-
ing with postdischarge support for older patients with congestive heart
339. Gislason GH, Rasmussen JN, Ahlbildt SZ, et al. Persistent use of
evidence-based pharmacotherapy in heart failure is associated with
effectiveness of angiotensin-converting enzyme inhibitors in older
patients with heart failure and left ventricular systolic dysfunction.
yties increases preventable hospitalizations and mortality among Medicare ben-
342. Windham BG, Bennett RG, Gottlieb S. Care management interven-
343. Fonarow GC, Albert NM, Curtis AB, et al. Improving evidence-based care
for heart failure in outpatient cardiology practices: primary results of
the Registry to Improve the Use of Evidence-Based Heart Failure Therapies
344. Fonarow GC, Abraham WT, Albert NM, et al. Association between per-
formance measures and clinical outcomes for patients hospitalized with
345. Hernandez AF, Greiner MA, Fonarow GC, et al. Relationship between early
physician follow-up and 30-day readmission among Medicare bene-
347. Unpublished data provided by the Office of Information Products and
Data Analytics-CMS. CMS Administrative Claims Data. Jan 2011 - Dec
348. Caracceia EO, Davis KB, Sokpo G, et al. Comparison of surgical and
medical group survival in patients with left main coronary artery disease:
349. The VA Coronary Artery Bypass Surgery Cooperative Study Group. Eighteen-
year follow-up in the Veterans Affairs Cooperative Study of Coronary Artery
350. The Veterans Administration Coronary Artery Bypass Surgery
Cooperative Study Group. Eleven-year survival in the Veterans
Administration randomized trial of coronary bypass surgery for stable
2011;364:2187–98.
355. Hauptman PJ, Havranek EP. Integrating palliative care into heart failure
management: the case of the interdisciplinarity of palliative care. Heart.
2005;84:179–89.
356. Laranee AS, Levinsky SK, Sargent J, et al. Case management in a heter-
ogeneous congestive heart failure population: a randomized controlled
357. Clark RA, Inglis SC, McAlister FA, et al. Telemonitoring or structured
telephone support programmes for patients with chronic heart failure:
management telephone intervention on resource use patients with chronic
360. Riegel B, Carlson B, Glaser D, et al. Randomized controlled trial of
telephone case management in Hispanics of Mexican origin with heart
361. Krumholz HM, Currie PM, Riegel B, et al. A taxonomy for disease man-
agement: a scientific statement from the American Heart Association
through disease management: principles and recommendations from the
American Heart Association’s Expert Panel on Disease Management.
tion to prevent the readmission of elderly patients with congestive heart
364. McAlister FA, Lawson FM, Teo KK, et al. A systematic review of ran-
domized trials of disease management programs in heart failure. Am J
365. Riegel B, LePetri B. Heart failure disease management models. In: Moser D,
Riegel B, eds. Improving Outcomes in Heart Failure: An Interdisciplinary
366. Coleman EA, Mahoney E, Parry C. Assessing the quality of preparation
for posthospital care from the patient’s perspective: the care transitions
368. Hauptman PJ, HavraneK EP. Integrating palliative care into heart failure
improve the palliative care of pain, dyspnea, and depression at the
end of life: a clinical practice guideline from the American College of
371. Jencks SF, Huffer ED, Cuerdon T. Change in the quality of care deliv-
372. Yancy et al 2013 ACCF/AHA Heart Failure Guideline: Executive Summary
KEY WORDS: AHA Scientific Statements
383. Bonow RO, Ganiats TG, Beam CT et al. ACCF/AHA/AMA-PCPI
Guideline forthe management of valvular heart disease: a report of the
American College of Cardiology Foundation/American Heart
Association Task Force on Practice Guidelines, published by the
American College of Cardiology, the American Heart
2006;113:1807–98.
384. Riegel B, Lepere P. Heart failure disease management models. In: Moser D,
Riegel B, eds. Improving Outcomes in Heart Failure: An Interdisciplinary
385. Coleman EA, Mahoney E, Parry C. Assessing the quality of preparation
for posthospital care from the patient’s perspective: the care transitions
386. Lorenz KA, Lynn J, Dy SM, et al. Evidence for improving palliative care
387. Hauptman PJ, HavraneK EP. Integrating palliative care into heart failure
improve the palliative care of pain, dyspnea, and depression at the
end of life: a clinical practice guideline from the American College of
390. Jencks SF, Huffer ED, Cuerdon T. Change in the quality of care deliv-

Key Words: AHA Scientific Statements • cardiac-renal physiology/
pathophysiology • congestive heart failure • CV surgery: transplantation,
ventricular assistance, cardiomyopathy • epidemiology • health policy and
outcome research • heart failure • other heart failure
Appendix 1. Author Relationships With Industry and Other Entities (Relevant)—2013 ACCF/AHA Guideline for the Management of Heart Failure

<table>
<thead>
<tr>
<th>Committee Member</th>
<th>Employment</th>
<th>Consultant</th>
<th>Ownership/Partnership</th>
<th>Personal Research</th>
<th>Institutional, Organizational, or Other Financial Benefit</th>
<th>Expert Witness</th>
<th>Voting Recusals by Section**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clyde W. Yancy, Chair</td>
<td>Northwestern University—Chief, Division of Cardiology and Magerstadt Professor of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Mariell Jessup, Vice Chair</td>
<td>University of Pennsylvania—Professor of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Amgen</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Biykem Bozkurt</td>
<td>Michael E. DeBakey VA Medical Center—The Mary and Gordon Cain Chair and Professor of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Celladon</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Javed Butler</td>
<td>Emory Healthcare—Director of Heart Failure Research; Emory University School of Medicine—Professor of Medicine</td>
<td>Amgen, CardioMEMS, Gambro, Takeda</td>
<td>None</td>
<td>None</td>
<td>Amgen</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Donald E. Casey, Jr</td>
<td>Clinically Integrated Physician Network, NYU Langone Medical Center—Vice President and Medical Director</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Mark H. Drazner</td>
<td>University of Texas Southwestern Medical Center—Professor, Internal Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>HeartWare, Scios/Johnson & Johnson†, Medtronic, Thoratec†</td>
<td>None</td>
<td>7.1, 7.2, 7.3.2, 7.3.4, 7.4.4, 7.4.5, 7.4.6, 8.6, 8.7, 10</td>
</tr>
<tr>
<td>Gregg C. Fonarow</td>
<td>Director Ahmanson—UCLA Cardiomyopathy Center; Co-Chief—UCLA Division of Cardiology</td>
<td>Gambro (formerly CHF Solutions), Medtronic, Novartis†, Takeda</td>
<td>None</td>
<td>None</td>
<td>Gambro (formerly CHF Solutions), Medtronic</td>
<td>None</td>
<td>7.1, 7.2 (Class IIa), 7.3.2, 7.3.4, 7.4.4, 7.4.5, 7.4.6, 8.3, 8.4, 8.7, 10</td>
</tr>
<tr>
<td>Stephen A. Geraci</td>
<td>Quillen College of Medicine/East Tennessee State University—Chairman of Internal Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Tamara Horwich</td>
<td>Ahmanson—UCLA Cardiomyopathy Center—Assistant Professor of Medicine, Cardiology</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>Committee Member</th>
<th>Employment</th>
<th>Consultant</th>
<th>Ownership/Partnership/Principal</th>
<th>Personal Research</th>
<th>Institutional, Organizational, or Other Financial Benefit</th>
<th>Expert Witness</th>
<th>Voting Recusals by Section*</th>
</tr>
</thead>
<tbody>
<tr>
<td>James L. Januzzi</td>
<td>Harvard Medical School—Associate Professor of Medicine; Massachusetts General Hospital—Director, Cardiac Intensive Care Unit</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>6.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>6.3</td>
</tr>
<tr>
<td>Maryl R. Johnson</td>
<td>University of Wisconsin—Madison, Professor of Medicine, Director Heart Failure and Transplantation</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Edward K. Kasper</td>
<td>Johns Hopkins Hospital—E. Cowles Andrus Professor in Cardiology, Director, Clinical Cardiology</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Wayne C. Levy</td>
<td>University of Washington—Professor of Medicine, Division of Cardiology</td>
<td>• Cardiac Dimensions†, • Aminex, • Boehringer, • GE/Scios/Johnson & Johnson, • GlaxoSmithKline</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>6.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>6.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>7.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>7.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>7.3.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>7.3.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>7.3.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>7.4.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>8.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>8.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>8.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>10</td>
</tr>
<tr>
<td>Frederick A. Masoudi</td>
<td>University of Colorado, Denver—Associate Professor of Medicine, Division of Cardiology</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Patrick E. McBride</td>
<td>University of Wisconsin School of Medicine and Public Health—Professor of Medicine and Family Medicine, Associate Dean for Students, Associate Director, Preventive Cardiology</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>John J.V. McMurray</td>
<td>University of Glasgow, Scotland, BHF Glasgow Cardiovascular Research Center—Professor of Medical Cardiology</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Judith E. Mitchell</td>
<td>SUNY Downstate Medical Center—Director, Heart Failure Center; Associate Professor of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Pamela N. Peterson</td>
<td>University of Colorado, Denver Health Medical Center—Associate Professor of Medicine, Division of Cardiology</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Barbara Riegel</td>
<td>University of Pennsylvania School of Nursing—Professor</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

(continued)
Appendix 1. Continued

<table>
<thead>
<tr>
<th>Committee Member</th>
<th>Employment</th>
<th>Consultant</th>
<th>Speaker's Bureau</th>
<th>Ownership/ Partnership/ Principal</th>
<th>Personal Research</th>
<th>Institutional, Organizational, or Other Financial Benefit</th>
<th>Expert Witness</th>
<th>Voting Recusals by Section*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flora Sam</td>
<td>Boston University School of Medicine, Whitaker Cardiovascular Institute—Associate Professor of Medicine, Division of Cardiology/ Cardiomyopathy Program</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Lynne W. Stevenson</td>
<td>Brigham and Women’s Hospital Cardiovascular Division—Director, Cardiomyopathy and Heart Failure Program</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>• Biosense Webster</td>
<td>None</td>
<td>None</td>
<td>7.3.4</td>
</tr>
<tr>
<td>W.H. Wilson Tang</td>
<td>Cleveland Clinic Foundation—Associate Professor of Medicine, Research Director for Heart Failure/Transplant</td>
<td>Medical</td>
<td>• Medtronic</td>
<td>None</td>
<td>• Abbott†</td>
<td>None</td>
<td>None</td>
<td>6.2</td>
</tr>
<tr>
<td>Emily J. Tsai</td>
<td>Temple University School of Medicine—Assistant Professor of Medicine, Cardiology</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Bruce L. Wilkoff</td>
<td>Cleveland Clinic—Director, Cardiac Pacing and Tachyarrhythmia Devices; Director, Clinical EP Research</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>• Biotronic</td>
<td>None</td>
<td>None</td>
<td>7.2 (Class IIa)</td>
</tr>
</tbody>
</table>

This table represents the relationships of committee members with industry and other entities that were determined to be relevant to this document. These relationships were reviewed and updated in conjunction with all meetings and/or conference calls of the writing committee during the document development process. The table does not necessarily reflect relationships with industry at the time of publication. A person is deemed to have a significant interest in a business if the interest represents ownership of $\geq 5\%$ of the voting stock or share of the business entity, or ownership of $\geq \$10,000$ of the fair market value of the business entity; or if funds received by the person from the business entity exceed 5% of the person’s gross income for the previous year. Relationships that exist with no financial benefit are also included for the purpose of transparency. Relationships in this table are modest unless otherwise noted.

According to the ACCF/AHA, a person has a **relevant relationship** IF: a) The relationship or interest relates to the same or similar subject matter, intellectual property or asset, topic, or issue addressed in the document; or b) The company/entity (with whom the relationship exists) makes a drug, drug class, or device addressed in the document, or makes a competing drug or device addressed in the document; or c) The person or a member of the person’s household, has a reasonable potential for financial, professional or other personal gain or loss as a result of the issues/content addressed in the document.

*Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry and other entities may apply. Section numbers pertain to those in the full-text guideline.

†Indicates significant relationship.

DSMB indicates Data Safety Monitoring Board; EP, electrophysiology; NYU, New York University; PARADIGM, a Multicenter, Randomized, Double-blind, Parallel Group, Active-controlled Study to Evaluate the Efficacy and Safety of LCZ696 Compared to Enalapril on Morbidity and Mortality in Patients With Chronic Heart Failure and Reduced Ejection Fraction; PI, Principal Investigator; SUNY, State University of New York; UCLA, University of California, Los Angeles; and VA, Veterans Affairs.
Appendix 2. Reviewer Relationships With Industry and Other Entities (Relevant)—2013 ACCF/AHA Guideline for the Management of Heart Failure

<table>
<thead>
<tr>
<th>Reviewer</th>
<th>Representation</th>
<th>Employment</th>
<th>Consultant</th>
<th>Speaker's Bureau</th>
<th>Ownership/Partnership/Principal</th>
<th>Personal Research</th>
<th>Institutional, Organizational, or Other Financial Benefit</th>
<th>Expert Witness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nancy Albert</td>
<td>Official Reviewer—ACCF/AHA Task Force on Practice Guidelines</td>
<td>Kaufman Center for Heart Failure—Senior Director of Nursing Research</td>
<td>BG Medicine, Medtronic, Merck†</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Kathleen Grady</td>
<td>Official Reviewer—AHA</td>
<td>Bluhm Cardiovascular Institute—Administrative Director, Center for Heart Failure</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Paul Hauptman</td>
<td>Official Reviewer—AHA</td>
<td>St Louis University School of Medicine—Professor of Internal Medicine, Division of Cardiology</td>
<td>BG Medicine, BioControl Medical, Otsuka*</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>• EvaHeart†</td>
<td>None</td>
</tr>
<tr>
<td>Hector Ventura</td>
<td>Official Reviewer—ACCF Board of Governors</td>
<td>Ochsner Clinic Foundation—Director, Section of Cardiomyopathy and Heart Transplantation</td>
<td>Otsuka</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Mary Norine Walsh</td>
<td>Official Reviewer—ACCF Board of Trustees</td>
<td>St. Vincent Heart Center of Indiana—Medical Director</td>
<td>United Healthcare</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Jun Chiong</td>
<td>Organizational Reviewer—ACCP</td>
<td>Loma Linda University—Associate Clinical Professor of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>• Otsuka (DSMB)</td>
<td>None</td>
</tr>
<tr>
<td>David DeLurgio</td>
<td>Organizational Reviewer—HRS</td>
<td>The Emory Clinic—Associate Professor, Director of EP Laboratory</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Folashade Omole</td>
<td>Organizational Reviewer—AAFP</td>
<td>Morehouse School of Medicine—Associate Professor of Clinical Family Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Robert Rich, Jr</td>
<td>Organizational Reviewer—AAFP</td>
<td>Bladen Medical Associates—Family Practice</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>David Taylor</td>
<td>Organizational Reviewer—ISHLT</td>
<td>Cleveland Clinic, Department of Cardiology—Professor of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>• Biotronix†, Genentech†, HeartWare†, ISHLT, Novartis†, St. Jude’s Medical†</td>
<td>None</td>
</tr>
<tr>
<td>Kimberly Birtcher</td>
<td>Content Reviewer—ACCF Cardiovascular Team Council</td>
<td>University of Houston College of Pharmacy—Clinical Professor</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Kay Blum</td>
<td>Content Reviewer—ACCF Cardiovascular Team Council</td>
<td>Medstar Southern Maryland Hospital Center—Nurse Practitioner</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

(continued)
Appendix 2. Continued

<table>
<thead>
<tr>
<th>Reviewer</th>
<th>Representation</th>
<th>Employment</th>
<th>Consultant</th>
<th>Speaker’s Bureau</th>
<th>Ownership/Partnership/Principal</th>
<th>Personal Research</th>
<th>Institutional, Organizational, or Other Financial Benefit</th>
<th>Expert Witness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michael Chan</td>
<td>Content Reviewer—ACCF Cardiovascular Team Council</td>
<td>Royal Alexandra Hospital—Co-Director, Heart Function Program; University of Alberta—Associate Clinical Professor of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Medtronic</td>
<td>None</td>
</tr>
<tr>
<td>Jane Chen</td>
<td>Content Reviewer—ACCF EP Committee</td>
<td>Washington University School of Medicine—Assistant Professor of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>St. Jude Medical</td>
<td>None</td>
</tr>
<tr>
<td>Michael Clark</td>
<td>Content Reviewer—ACCF Cardiovascular Team Council</td>
<td>North Texas Cardiology and EP—Associate Professor</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Abbott Pharma</td>
<td>None</td>
</tr>
<tr>
<td>Marco Costa</td>
<td>Content Reviewer—ACCF Imaging Council</td>
<td>University Hospital for Cleveland—Professor of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Abbott Vascular</td>
<td>None</td>
</tr>
<tr>
<td>Anita Deswal</td>
<td>Content Reviewer</td>
<td>Baylor College of Medicine—Associate Professor of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Amgen†</td>
<td>None</td>
</tr>
<tr>
<td>Steven Dunn</td>
<td>Content Reviewer—ACCF Prevention Committee</td>
<td>University of Virginia Health System—Clinical Pharmacy Specialist</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Novartis†</td>
<td>None</td>
</tr>
<tr>
<td>Andrew Epstein</td>
<td>Content Reviewer</td>
<td>University of Pennsylvania—Professor of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Biosense Webster*</td>
<td>None</td>
</tr>
<tr>
<td>Justin Ezekowitz</td>
<td>Content Reviewer—AHA</td>
<td>Mazankowski Alberta Heart Institute—Director, Heart Function Clinic</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Amgen</td>
<td>None</td>
</tr>
<tr>
<td>Gerasimos Filippatos</td>
<td>Content Reviewer</td>
<td>University of Athens—Department of Cardiology</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Corthera</td>
<td>None</td>
</tr>
<tr>
<td>Linda Gillam</td>
<td>Content Reviewer—ACCF Imaging Council</td>
<td>Morristown Medical Center—Professor of Cardiology</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Edwards Lifesciences†</td>
<td>None</td>
</tr>
<tr>
<td>Paul Heidenreich</td>
<td>Content Reviewer</td>
<td>Stanford VA Palo Alto Medical Center—Assistant Professor of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Medtronic†</td>
<td>None</td>
</tr>
<tr>
<td>Paul Hess</td>
<td>Content Reviewer—ACCF EP Committee</td>
<td>Duke University School of Medicine—Fellow</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Reviewer</td>
<td>Representation</td>
<td>Employment</td>
<td>Consultant</td>
<td>Speaker’s Bureau</td>
<td>Ownership/Partnership/Principal</td>
<td>Personal Research</td>
<td>Institutional, Organizational, or Other Financial Benefit</td>
<td>Expert Witness</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
<td>--</td>
<td>------------</td>
<td>------------------</td>
<td>--------------------------------</td>
<td>-------------------</td>
<td>---</td>
<td>----------------</td>
</tr>
<tr>
<td>Sharon Ann Hunt</td>
<td>Content Reviewer</td>
<td>Stanford University Medical Center—Professor, Department of Cardiovascular Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Charles McKay</td>
<td>Content Reviewer—ACCF Council on Cardiovascular Care for Older Adults</td>
<td>Harbor-UCLA Medical Center—Professor of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>James McClurken</td>
<td>Content Reviewer—ACCF Surgeons’ Scientific Council</td>
<td>Temple University School of Medicine—Director of Cardiothoracic Perioperative Services</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Wayne Miller</td>
<td>Content Reviewer—ACCF Heart Failure and Transplant Council</td>
<td>Mayo Clinic—Professor of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Rick Nishimura</td>
<td>Content Reviewer</td>
<td>Mayo Clinic—Professor of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Donna Petruccelli</td>
<td>Content Reviewer—ACCF Heart Failure and Transplant Council</td>
<td>Lehigh Valley Health Network—Heart Failure Nurse Practitioner/Clinical Nurse Specialist, Center for Advanced Heart Failure</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Geetha Raghuveer</td>
<td>Content Reviewer—ACCF Board of Governors</td>
<td>Children’s Mercy Hospital—Associate Professor of Pediatrics</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Pasala Ravichandran</td>
<td>Content Reviewer—ACCF Surgeons’ Scientific Council</td>
<td>Oregon Health & Science University—Associate Professor</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Michael Rich</td>
<td>Content Reviewer—ACCF Council on Cardiovascular Care for Older Adults</td>
<td>Washington University School of Medicine—Professor of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Anitra Romfh</td>
<td>Content Reviewer—ACCF Adult Congenital and Pediatric Cardiology Council</td>
<td>Children’s Hospital Boston—Clinical Fellow in Pediatrics</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Andrea Russo</td>
<td>Content Reviewer—ACCF Task Force on Appropriate Use Criteria</td>
<td>Cooper University Hospital—Professor of Medicine</td>
<td>• Biotronik • Boston Scientific • Cameron Health • Medtronic • St. Jude Medical</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Dipan Shah</td>
<td>Content Reviewer—ACCF Imaging Council</td>
<td>Methodist DeBakey Heart Center—Director</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>• AstraZeneca<sup>*</sup> • Lantheus Medical Imaging</td>
<td>None</td>
</tr>
</tbody>
</table>
Appendix 2. Continued

<table>
<thead>
<tr>
<th>Reviewer</th>
<th>Representation</th>
<th>Employment</th>
<th>Consultant</th>
<th>Speaker’s Bureau</th>
<th>Ownership/Partnership/Principal</th>
<th>Personal Research</th>
<th>Institutional, Organizational, or Other Financial Benefit</th>
<th>Expert Witness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randy Starling</td>
<td>Content Reviewer</td>
<td>Cleveland Clinic, Department of Cardiovascular Medicine—Vice Chairman</td>
<td>• Novartis</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>• Biotronik</td>
<td>None</td>
</tr>
<tr>
<td>Karen Stout</td>
<td>Content Reviewer—ACCF Adult Congenital and Pediatric Cardiology Council</td>
<td>University of Washington—Director, Adult Congenital Heart Disease Program</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>John Teerlink</td>
<td>Content Reviewer</td>
<td>San Francisco VA Medical Center—Professor of Medicine</td>
<td>• Amgen*</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>• Amgen*</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Anexon</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>• Merck</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• CardioMEMS*</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>• Novartis</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Cytokinetics</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>• Scios/Johnson & Johnson</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Novartis*</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>• St. Jude Medical*</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Trevena</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
<td>None</td>
</tr>
<tr>
<td>Robert Touchon</td>
<td>Content Reviewer—ACCF Prevention Committee</td>
<td>Marshall University, Joan C. Edwards School of Medicine—Professor of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
<td>None</td>
</tr>
<tr>
<td>Hiroyuki Tsutsui</td>
<td>Content Reviewer</td>
<td>Hokkaido University—Professor of Medicine</td>
<td>• Daiichi-Sankyo*</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Novartis*</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Pfizer</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Takeda*</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
<td>None</td>
</tr>
<tr>
<td>Robert Vincent</td>
<td>Content Reviewer—ACCF Adult Congenital and Pediatric Cardiology Council</td>
<td>Emory University School of Medicine—Professor of Pediatrics</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>• AGA</td>
<td>None</td>
</tr>
</tbody>
</table>

This table represents the relationships of reviewers with industry and other entities that were disclosed at the time of peer review and determined to be relevant to this document. It does not necessarily reflect relationships with industry at the time of publication. A person is deemed to have a significant interest in a business if the interest represents ownership of ≥5% of the voting stock or share of the business entity, or ownership of ≥$10 000 of the fair market value of the business entity; or if funds received by the person from the business entity exceed 5% of the person’s gross income for the previous year. A relationship is considered to be modest if it is less than significant under the preceding definition. Relationships that exist with no financial benefit are also included for the purpose of transparency. Relationships in this table are modest unless otherwise noted. Names are listed in alphabetical order within each category of review.

According to the ACCF/AHA, a person has a relevant relationship IF: a) The relationship or interest relates to the same or similar subject matter, intellectual property or asset, topic, or issue addressed in the document; or b) The company/entity (with whom the relationship exists) makes a drug, drug class, or device addressed in the document; or makes a competing drug or device addressed in the document; or c) The person or a member of the person’s household, has a reasonable potential for financial, professional or other personal gain or loss as a result of the issues/content addressed in the document.

*Significant relationship.
†No financial benefit.
AAFP indicates American Academy of Family Physicians; ACCF, American College of Cardiology Foundation; ACCP, American College of Chest Physicians AHA, American Heart Association; DSMB, data safety monitoring board; EP, electrophysiology; HRS, Heart Rhythm Society; ISHLT, International Society for Heart and Lung Transplantation; UCLA, University of California, Los Angeles; and VA, Veterans Affairs.