
David P. Ryan, M.D.

Clinical Director, MGH Cancer Center

Chief, Hematology-Oncology, MGH

Colon Cancer Case presentation

- 72yo woman presented 1/03 abd discomfort and nausea
- Found to have Hct 30 MCV71
- Alk Ph 150
- USG of pelvis to f/u fibroids demonstrated liver mass
- Colonoscopy: splenic flexure mass = adenocarcinoma

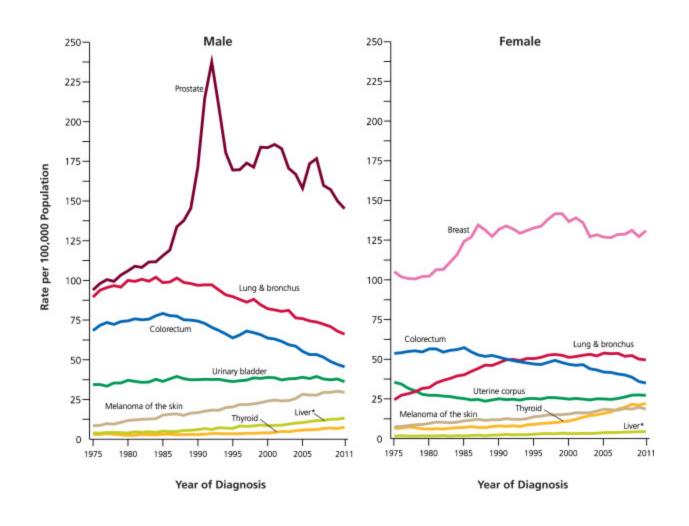
Agenda

- Statistics and Epidemiology
- Inherited Syndromes
- Approach to Screening
- Treatment

Statistics

Estimated New Cases

			Males	Females	3		
Prostate	220,800	26%			Breast	231,840	29%
Lung & bronchus	115,610	14%			Lung & bronchus	105,590	13%
Colon & rectum	69,090	8%		X	Colon & rectum	63,610	8%
Urinary bladder	56,320	7%			Uterine corpus	54,870	7%
Melanoma of the skin	42,670	5%			Thyroid	47,230	6%
Non-Hodgkin lymphoma	39,850	5%			Non-Hodgkin lymphoma	32,000	4%
Kidney & renal pelvis	38,270	5%			Melanoma of the skin	31,200	4%
Oral cavity & pharynx	32,670	4%			Pancreas	24,120	3%
Leukemia	30,900	4%			Leukemia	23,370	3%
Liver & intrahepatic bile duct	25,510	3%			Kidney & renal pelvis	23,290	3%
All Sites	848,200	100%	_		All Sites	810,170	100%


Statistics

Estimated Deaths

			Males	Females
Lung & bronchus	86,380	28%		Lung & bronchus 71,660 26%
Prostate	27,540	9%		Breast 40,290 15%
Colon & rectum	26,100	8%		Colon & rectum 23,600 9%
Pancreas	20,710	7%		Pancreas 19,850 7%
Liver & intrahepatic bile duct	17,030	5%		Ovary 14,180 5%
Leukemia	14,210	5%		Leukemia 10,240 4%
Esophagus	12,600	4%		Uterine corpus 10,170 4%
Urinary bladder	11,510	4%		Non-Hodgkin lymphoma 8,310 3%
Non-Hodgkin lymphoma	11,480	4%		Liver & intrahepatic bile duct 7,520 3%
Kidney & renal pelvis	9,070	3%		Brain & other nervous system 6,380 2%
All Sites	312,150	100%	_	All Sites 277,280 100%

Cancer Trends

Probability of Developing Cancer

TABLE 4. Probability (%) of Developing Invasive Cancer Within Selected Age Intervals by Sex, United States, 2009 to 2011*

		BIRTH TO 49	50 TO 59	60 TO 69	≥70	BIRTH TO DEATH
All sites†	Male	3.4 (1 in 29)	6.7 (1 in 15)	15.1 (1 in 7)	36.0 (1 in 3)	433 (1 in 2)
	Female	5.4 (1 in 19)	6.0 (1 in 17)	10.0 (1 in 10)	26.4 (1 in 4)	37.8 (1 in 3)
Breast	Female	1.9 (1 in 53)	2.3 (1 in 44)	3.5 (1 in 29)	6.7 (1 in 15)	123 (1 in 8)
Colorectum	Male	0.3 (1 in 300)	0.7 (1 in 148)	1.3 (1 in 80)	3.9 (1 in 26)	4.8 (1 in 21)
	Female	0.3 (1 in 326)	0.5 (1 in 193)	0.9 (1 in 112)	3.5 (1 in 28)	4.5 (1 in 22)
Kidney & renal pelvis	Male	0.2 (1 in 468)	0.3 (1 in 292)	0.6 (1 in 157)	1.3 (1 in 76)	2.0 (1 in 49)
-	Female	0.1 (1 in 752)	0.2 (1 in 586)	0.3 (1 in 321)	0.7 (1 in 134)	1.2 (1 in 84)
Leukemia	Male	0.2 (1 in 419)	0.2 (1 in 598)	0.4 (1 in 271)	1.3 (1 in 75)	1.7 (1 in 59)
	Female	0.2 (1 in 516)	0.1 (1 in 968)	0.2 (1 in 464)	0.9 (1 in 117)	1.2 (1 in 84)
Lung & bronchus	Male	0.2 (1 in 578)	0.7 (1 in 140)	2.0 (1 in 49)	6.6 (1 in 15)	7.4 (1 in 13)
_	Female	0.2 (1 in 541)	0.6 (1 in 173)	1.6 (1 in 64)	4.9 (1 in 20)	6.2 (1 in 16)
Melanoma of the skin‡	Male	0.3 (1 in 294)	0.4 (1 in 240)	0.8 (1 in 129)	2.1 (1 in 47)	3.0 (1 in 34)
	Female	0.5 (1 in 207)	0.3 (1 in 323)	0.4 (1 in 246)	0.9 (1 in 112)	1.9 (1 in 53)
Non-Hodgkin lymphoma	Male	0.3 (1 in 366)	0.3 (1 in 347)	0.6 (1 in 173)	1.8 (1 in 55)	2.4 (1 in 42)
	Female	0.2 (1 in 543)	0.2 (1 in 483)	0.4 (1 in 233)	1.4 (1 in 72)	1.9 (1 in 52)
Prostate	Male	0.3 (1 in 304)	2.3 (1 in 44)	6.3 (1 in 16)	10.9 (1 in 9)	15.0 (1 in 7)
Thyroid	Male	0.2 (1 in 585)	0.1 (1 in 827)	0.2 (1 in 653)	0.2 (1 in 464)	0.6 (1 in 174)
-	Female	0.7 (1 in 135)	0.3 (1 in 288)	0.3 (1 in 306)	0.4 (1 in 263)	1.7 (1 in 60)
Uterine cervix	Female	0.3 (1 in 358)	0.1 (1 in 840)	0.1 (1 in 842)	0.2 (1 in 565)	0.6 (1 in 154)
Uterine corpus	Female	0.3 (1 in 367)	0.6 (1 in 170)	0.9 (1 in 109)	1.3 (1 in 76)	2.7 (1 in 37)

^{*}For people free of cancer at beginning of age interval.

[†]All sites excludes basal cell and squamous cell skin cancers and in situ cancers except urinary bladder.

¹Probabilities are for whites.

5 Leading Cancer Deaths

TABLE 9. Five Leading Types of Cancer Death by Age and Sex, United States, 2011

ALL AGES	<20	20 TO 39	40 TO 59	60 TO 79	≥80		
	MALE						
ALL SITES	ALL SITES	ALL SITES	ALL SITES	ALL SITES	ALL SITES		
302,231	1,094	3,984	54,172	158,118	84,860		
Lung & bronchus	Brain & ONS	Leukemia	Lung & bronchus	Lung & brondhus	Lung & bronchus		
86,738	308	529	14,347	51,951	20, 216		
Prostate	Leukemia	Brain & ONS	Colorectum	Colorectum	Prostate		
27,970	293	491	5,789	13,088	14,956		
Colorectum	Bones & joints	Colorectum	Liver*	Prostate	Colorectum		
26, 804	107	442	4,754	11,732	7,480		
Pancreas	Soft tissue (including heart)	NHL	Pancreas	Pancreas	Urinary bladder		
18,881	80	278	3,676	10,594	4,785		
Liver*	NHL	Soft tissue (including heart)	Esophagus	Liver*	Pancreas		
14, 626	44	225	2,691	7,467	4,510		
		FEMALE					
ALL SITES	ALL SITES	ALL SITES	ALL SITES	ALL SITES	ALL SITES		
274,460	828	4,407	50,445	129,632	89, 145		
Lung & bronchus	Brain & ONS	Breast	Breast	Lung & bronchus	Lung & bronchus		
70, 219	242	1,041	11,340	39,287	19,694		
Breast	Leukemia	Uterine cervix	Lung & bronchus	Bresst	Breast		
40, 931	226	417	11,043	17,538	11,010		
Colorectum	Soft tissue (including heart)	Leukemia	Colorectum	Colorectum	Colorectum		
24, 979	68	356	4,209	10,084	10, 338		
Pancreas	Bones & joints	Colorectum	Ovary	Pancress	Pancreas		
18, 463	67	344	3,064	9,076	6,747		
Ovary	Kidney & renal pelvis	Brain & ONS	Pancreas	Overy	Leukemia		
14,346	23	303	2,578	7, 192	4,111		

- Epidemiologic Associations
 - Western/urbanized societies
 - High meat
 - High saturated fat and cholesterol
 - Increased bowel anaerobic flora
 - Deconjugated fecal bile acid excretion
 - Diabetes Mellitus
 - Tobacco use
 - Obesity
 - Alcohol

- Epidemiologic Associations
 - Western/urbanized societies
 - High meat
 - High saturated fat and cholesterol
 - Increased bowel anaerobic flora
 - Deconjugated fecal bile 2 a excretion
 - Diabetes Mellitus
 - Tobacco
 - Obesity
 - Alcohol

Obesity and Cancer in Men

Table 1. RR for cancer per 5 kg/m² higher BMI and most likely causal mechanism: Males

 1.08^{b}

1.07

 1.06^{a}

1.03 0.76^a

 0.71^{a}

Cancer type	KK	Causai mechanism	
Esophageal adenocarcinoma	1.52 ^a	Reflux esophagitis and chronic irritation	
Thyroid	1.33°	Unknown	
Colon	1.24 ^a	Insulin	
Renal	1.24 ^a	In part though hypertension	
Liver	1.24	Fatty liver cirrhosis	
Malignant melanoma	1.17 ^b	?	
Multiple myeloma	1.11 ^a	Inflammatory pathways—IL-6	
Rectum	1.09 ^a	?	
Gallbladder	1.09	Chronic secretion-gallstones and irritation	

Shown is the RR for a five-point greater BMI—for example, the RR linked to a BMI of 28 compared with a BMI of 23, or a BMI of 32 compared with a BMI of 27.

Possible insulin pathway

Inflammatory pathways—IL-6

Smoking leads to leanness and causes lung cancer

Smoking leads to leanness and causes squamous esophageal cancer

Leukemia

Pancreas

Prostate^a

Lung

Non-Hodgkin's lymphoma

Esophageal squamous

Abbreviations: BMI, body mass index; IL, interleukin; RR, relative risk.

Based on Figure 3 of Renehan AG, Tyson M, Egger M et al. Body-mass index and incidence of cancer: A systematic review and meta-analysis of prospective observational studies. Lancet 2008;371:569–578.

p < .0001.

 $^{^{}b'}p < .01.$

 $^{^{}c}p < .05.$

^dBiased to null because this includes predominantly low-grade lesions.

Obesity and Cancer in Women

Cancer type	RR	Causal mechanism		
Endometrium	1.59 ^a	Endogenous estrogen		
Gallbladder	1.59°	Chronic secretion-gallstones and irritation		
Esophageal adenocarcinoma	1.51 ^a	Reflux esophagitis and chronic irritation		
Renal	1.34 ^a	In part through hypertension		
Leukemia	1.17°	Unknown		
Thyroid	1.14 ^b	Unknown		
Breast (postmenopausal)	1.12°	Endogenous estrogen		
Pancreas	1.12°	Possible insulin pathway		
Multiple myeloma	1.11 ^a	Inflammatory pathways—IL-6		
Colon	1.09 ^a	Insulin		
Non-Hodgkin's lymphoma	1.07	Inflammatory pathways—IL-6		
Liver	1.07	Fatty liver cirrhosis		
Breast (premenopausal)	0.92 ^b	Irregular menstrual cycles, hormones		
Lung	0.8°	Smoking leads to leanness and causes lung cancer		
Esophageal squamous	0.57 ^a	Smoking leads to leanness and causes squamous esophageal cancer		

RR for a five-point greater BMI—for example, the RR linked to a BMI of 28 compared with a BMI of 23, or a BMI of 32 compared with a BMI of 27.

Abbreviations: BMI, body mass index; IL, interleukin; RR, relative risk.

Based on Figure 4 of Renehan AG, Tyson M, Egger M et al. Body-mass index and incidence of cancer: A systematic review and meta-analysis of prospective observational studies. Lancet 2008;371:569–578.

 $^{^{\}mathrm{a}}p < .0001.$

 $^{^{}b'}p < .01.$

 $^{^{}c}p < .05.$

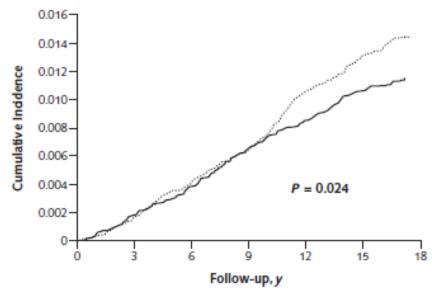
- Epidemiologic Associations
 - IBD
 - Risk in UC correlates with extent, duration and severity of disease
 - Risk of cancer in UC 9% at 10 yrs, 20% at 20yrs, and >35% at 30 years
 - Total colectomy eliminates the risk
 - Cholecystectomy
 - Ureterocolic anastamoses
 - Pelvic Radiation
 - Low Vit D

- Protective Factors
 - NSAIDs, folate, calcium, estrogens prevent development of polyps
 - No clear benefit for prevention of cancer
 - What is the role in patients getting adequately screened?
 - Physical activity
 - Diets high in fish and low in red meat associated with reduced incidence of colorectal cancer
 - Out of favor: anti-oxidants and fiber

- Chemoprevention with Aspirin
 - Multiple retrospective studies: reduced risk of colorectal adenomas and cancer in regular aspirin users
 - The Nurses' Health Study: regular use of aspirin (2 standard aspirin tables per day) was associated with a 25 percent reduction in the risk of an adenoma (RR 0.75, 95 percent CI 0.66 to 0.84)
 - Randomized studies of aspirin after a diagnosis of colorectal adenoma/carcinoma demonstrate reduced rate of adenomas

- Chemoprevention with Aspirin
 - BUT, the Physician's Health Study (prospective) failed to demonstrate a significant effect of aspirin use on the incidence of colorectal cancer
 - SUMMARY: The overall risk/benefit of prolonged daily aspirin for the primary prevention of colorectal cancer is unknown

But...


Annals of Internal Medicine

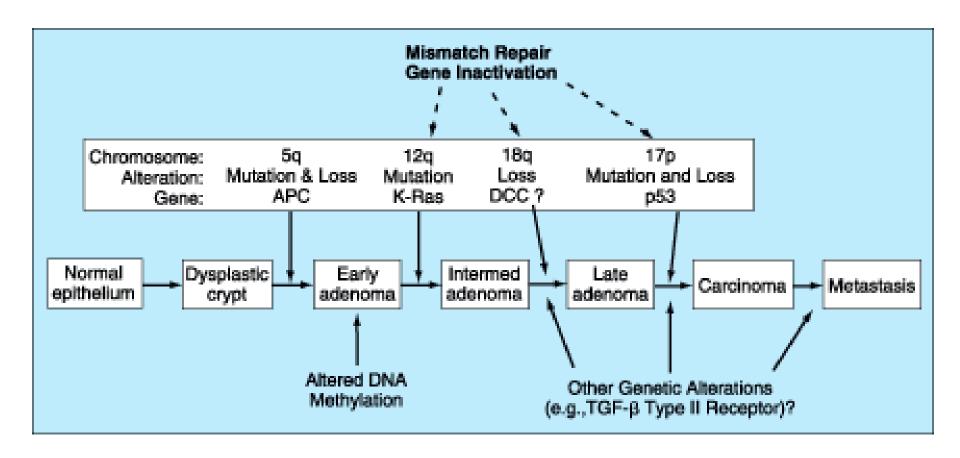
Original Research

Alternate-Day, Low-Dose Aspirin and Cancer Risk: Long-Term Observational Follow-up of a Randomized Trial

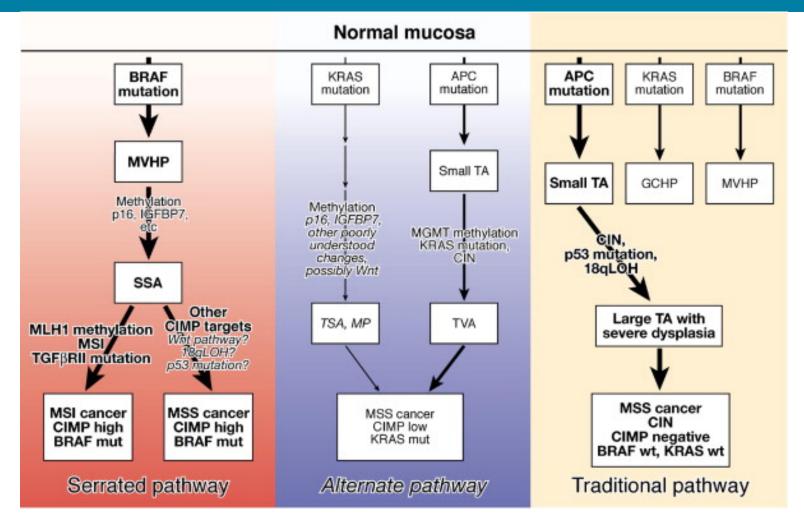
Nancy R. Cook, ScD; I-Min Lee, ScD; Shumin M. Zhang, ScD; M. Vinayaga Moorthy, PhD; and Julie E. Buring, ScD

C. Colorectal Cancer

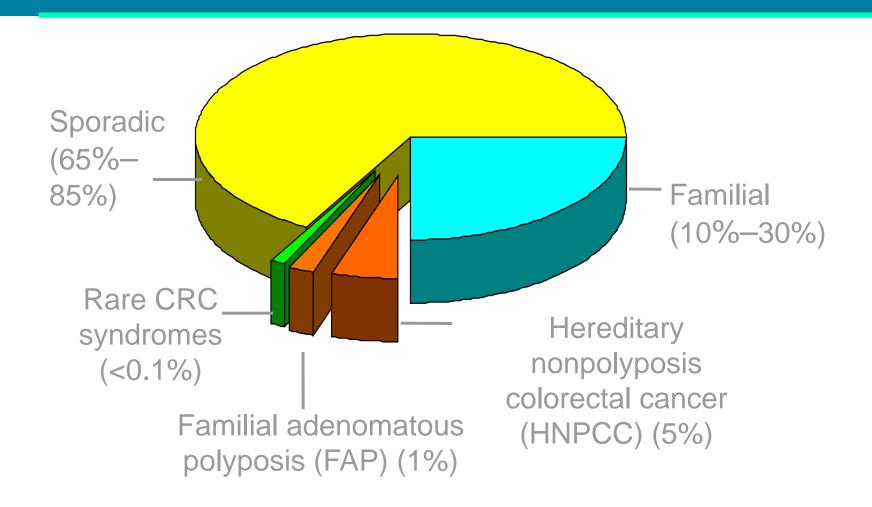
Participants at risk, n


Aspirin 19 934 19 443 18 868 17 975 15 592 14 617 Placebo 19 942 19 467 18 857 17 977 15 424 14 358

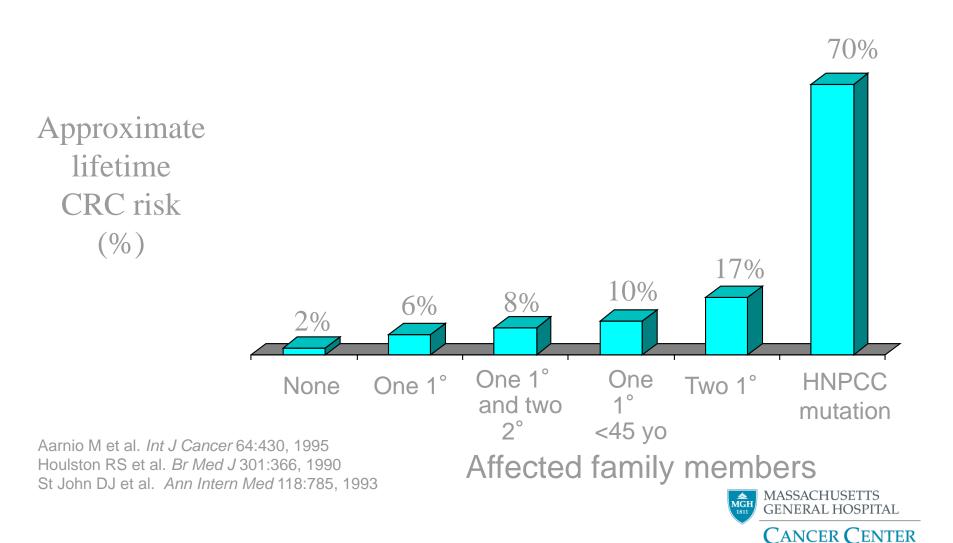
- Polyps:
 - hamartoma, hyperplastic, adenoma
- Adenomas are pre-malignant
 - Occur in 30-50% of adults
 - <1% polyps become cancer</p>
 - Adenomatous polyps more likely to become cancer if sessile, villous, and >
 1.5cm
 - Takes at least 5 yrs for polyp to become cancer
- Some hyperplastic polyps may be pre-malignant
 - Serrated polyps associated with right sided colon cancers that are braf mutant



Colon Cancer: Vogelgram



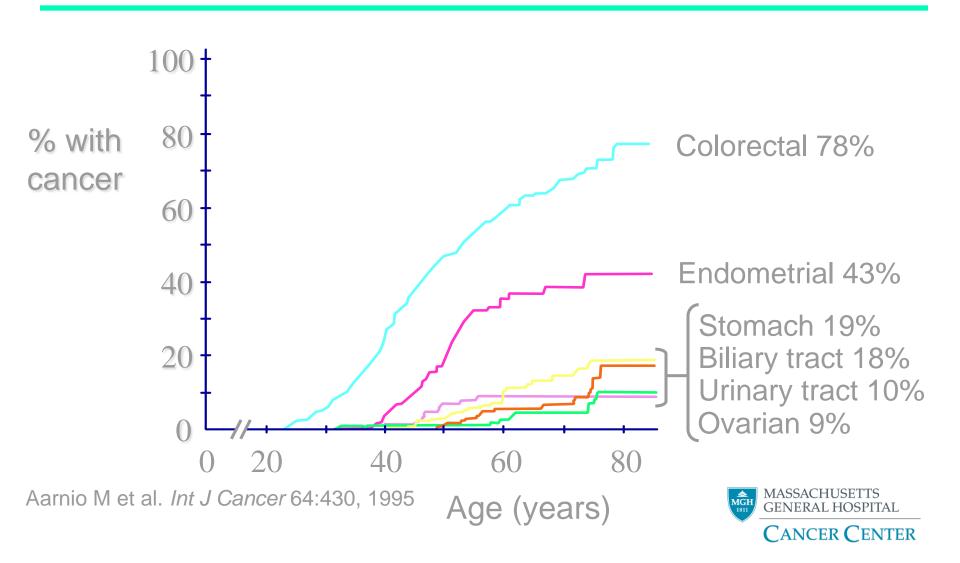
Carcinogenesis



Causes of colorectal cancer

Familial Risk for Colorectal Cancer

Colon Cancer Epidemiology


- Inherited Syndromes
 - Hereditary Non-Polyposis Colon Cancer
 - Familial Adenomatous Polyposis
 - MYH

Colon Cancer Epidemiology

- Hereditary Non-Polyposis Colon Cancer (Lynch Syndrome)
 - Autosomal dominant
 - Germline mutations in Mismatch Repair (MMR) genes leads to Microsatellite Instability (MSI)
 - Median age for tumors < 50
 - Proximal colon >> distal colon
 - May account for 5% of colon cancers

Cancer Risks in HNPCC

HNPCC

- Diagnosis
 - Amsterdam criteria
 - Bethesda criteria

Amsterdam Criteria

There should be at least three relatives with an HNPCCassociated cancer (colorectal cancer, cancer of the endometrium, small bowel, ureter, or renal pelvis)

One should be a first degree relative of the other two

At least two successive generations should be affected

At least 1 should be diagnosed before age 50

Familial adenomatous polyposis should be excluded in the colorectal cancer case(s) if any

Tumors should be verified by pathological examination

HNPCC: Bethesda Criteria

Tumors from individuals should be tested for MSI in the following situations:

- Colorectal cancer diagnosed in a patient who is less than 50 years of age.
- Presence of synchronous, metachronous colorectal, or other HNPCC-associated tumors*, regardless of age.
- Colorectal cancer with the MSI-H•-like histology∆ diagnosed in a patient who is less than 60 years of age⋄.
- Colorectal cancer diagnosed in a patient with one or more firstdegree relatives with an HNPCC-related tumor, with one of the cancers being diagnosed under age 50 years.
- Colorectal cancer diagnosed in a patient with two or more first- or second-degree relatives with HNPCC-related tumors, regardless of age.

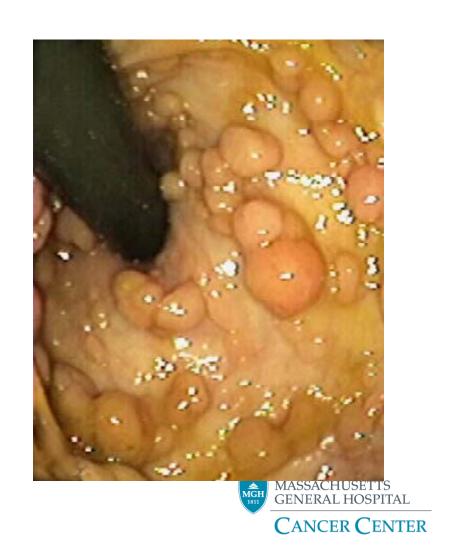
Laboratory Testing for HNPCC

- Tests on the Tumor
 - Immunohistochemistry testing of the tumor
 - MSI testing
- Tests on the Blood
 - Sequence analysis

Surveillance Options for Carriers of HNPCC-Associated Mutations

Intervention	Recommendation
Colonoscopy	Begin at age 20–25, repeat every 1–2 years
Transvaginal ultrasoundEndometrial aspirate	Annually, starting at age 25–35
	Colonoscopy Transvaginal ultrasound Endometrial

Other Surveillance in HNPCC


- Annual EGD
- Annual urinalysis with cytology
- Annual abdominal ultrasound

Clinical Features of FAP

• Estimated penetrance for adenomas >90%

• Untreated polyposis leads to 100% risk of cancer

Colon Cancer Epidemiology

- Familial Adenomatous Polyposis
 - Associated with
 - Congenital hypertophy of the retinal pigment epithelium
 - Desmoid tumors (Gardner's Syndrome)
 - Brain tumors (Turcot's Syndrome)
 - Screening of first degree relatives by age 10
 - Thousands of adenomatous polyps develop by age 20 and lead to cancer
 - Total colectomy with ileoanal anastomosis is treatment of choice

Lifetime Risk of Extra-Colonic Cancer in FAP

Site	Type of Cancer	Risk of Cancer
Small bowel: duodenum or periampulla	Carcinoma	4-12%
Small bowel: distal to the duodenum	Carcinoma	Rare
Stomach	Adenocarcinoma	0.5%
Pancreas	Adenocarcinoma	~2%
Thyroid	Papillary thyroid carcinoma	~2%
CNS	Usually medulloblastoma	<1%
Liver	Hepatoblastoma	1.6% (children <age 5="" td="" years)<=""></age>
Bile ducts	Adamaaaainaa	I avy but in area and
Adrenal gland	Adenocarcinoma	Low, but increased massachusetts general hospital
		CANCER CENTER

Many adenomas but no germline mutation in APC...

Consider germline mutations in **MYH**:

- •Base-excision repair gene. **Bi-allelic germline** mutations predispose to APC mutations that lead to colon adenomas, tumors.
- •Family history of colon cancer shows **recessive** inheritance.
- •Tens-to-hundreds of colorectal adenomas.

MGH Center for Cancer Risk Analysis 617-724-1971

Genetic Counselors:

»6 counselors

Programs:

- Breast and Ovarian: Leif Ellisen, MD, PhD
- Gastrointestinal: Daniel Chung, MD; Andy Chan, MD;
- Von Hippel Lindau: Othon Iliopoulos, MD
- Melanoma: Hensin Tsao, MD, PhD
- Psychiatry: William Pirl, MD

Colorectal Cancer Screening

How should I approach it?

US MultiSociety Task Force 2008

TABLE 1 Testing Options for the Early Detection of Colorectal Cancer and Adenomatous Polyps for Asymptomatic Adults Aged 50 Years and Older

Tests that Detect Adenomatous Polyps and Cancer

Flexible sigmoidoscopy every 5 years, or

Colonoscopy every 10 years, or

Double-contrast barium enema every 5 years, or

Computed tomographic colonography every 5 years

Tests that Primarily Detect Cancer

Annual guaiac-based fecal occult blood test with high test sensitivity for cancer, or

Annual fecal immunochemical test with high test sensitivity for cancer, or

Stool DNA test with high sensitivity for cancer, interval uncertain

US Multisociety Task Force, 2012 Update

2012 Recommendations for Surveillance and Screening Intervals in Individuals with Baseline Average Risk

Baseline Colonoscopy: Most Advanced Finding(s)	Recommended Surveillance Interval (years)	Quality of Evidence Supporting the Recommendation	New Evidence Stronger than 2006
No polyps	10	Moderate	Yes
Small (<10 mm) hyperplastic polyps in rectum or sigmoid	10	Moderate	No
1-2 small (<10 mm) tubular adenomas	5-10	Moderate	Yes
3-10 tubular adenomas	3	Moderate	Yes
>10 adenomas	<3	Moderate	No
One or more tubular adenomas ≥10 mm	3	High	Yes
One or more villous adenomas	3	Moderate	Yes
Adenoma with high grade dysplasia (HGD)	3	Moderate	No
Serrated lesions			
Sessile serrated polyp(s) <10 mm with no dysplasia	5	Low	NA
Sessile serrated polyp(s) ≥10 mm OR Sessile serrated polyp with dysplasia OR Traditional serrated adenoma	3	Low	NA
Serrated polyposis syndrome ^a	1	Moderate	NA

ΓER

Colon Cancer Screening

- Hemoccult: gFOBT or FIT
 - 2-4% of adults with test positive and 60% will have no mucosal abnormality in their large bowel
 - 50% of pts with CRC will have a false negative study
 - Minnesota study demonstrated that screening reduces deaths from CRC
 - BUT 36% of pts assigned to annual screening underwent endoscopy and there were 20% less cancers in this subgroup

Colon Cancer Screening

sDNA

- Sensitivity 52-91%
- Specificity 93-97%
- ?interval
- ?need for endoscopy

FIT vs sDNA

Table 1. Sensitivity and Specificity of the Multitarget Stool DNA Test and the Fecal Immunochemical Test (FIT) for the Most Advanced Findings on Colonoscopy.

Most Advanced Finding	Colonoscopy (N = 9989)	Multitarget DNA Test (N=9989)		FIT (N = 9989)	
		Positive Results	Sensitivity (95% CI)	Positive Results	Sensitivity (95% CI)
	no.	no.	%	no.	%
Colorectal cancer					
Any	65	60	92.3 (83.0–97.5)	48	73.8 (61.5–84.0)
Stage I to III*	60	56	93.3 (83.8–98.2)	44	73.3 (60.3–83.9)
Colorectal cancer and high-grade dysplasia	104	87	83.7 (75.1–90.2)	66	63.5 (53.5–72.7)
Advanced precancerous lesions†	757	321	42.4 (38.9–46.0)	180	23.8 (20.8–27.0)
Nonadvanced adenoma	2893	498	17.2 (15.9–18.6)	220	7.6 (6.7–8.6)
			Specificity (95% CI)		Specificity (95% CI)
All nonadvanced adenomas, non-neoplastic findings, and negative results on colonoscopy	9167	1231	86.6 (85.9–87.2)	472	94.9 (94.4–95.3)
Negative results on colonoscopy	4457	455	89.8 (88.9–90.7)	162	96.4 (95.8–96.9)

^{*} These stages of colorectal cancer, as defined by the system recommended by the American Joint Committee on Cancer, are associated with an increased rate of cure.

Imperiale TF et al. N Engl J Med 2014;370:1287-1297.

 $[\]dagger$ Advanced precancerous lesions include advanced adenomas and sessile serrated polyps measuring 1 cm or more.

Colon Cancer Screening

Barium Enema

-DON'T DO IT

Colon Cancer Screening Endoscopy

- Flexible sigmoidoscopy vs Colonscopy
 - Approximately 2% of asymptomatic adults will have proximal precancerous or cancerous lesions and have TOTALLY NORMAL sigmoidoscopies
 - Fecal occult blood testing plus sigmoidoscopy has a sensitivity of 75%,
 ie will miss 25% of lesions
 - Colonoscopy may miss lesions as much as 4% of time

Colonoscopy vs Flex Sig

		%	%
Source	pts	adequate exam	advanced neoplasm*
Lieberman NEJM 2000	3196	97.7	5.7
Imperiale NEJM 2000	1944	97	3.1

^{*}advanced neoplasm=carcinoma, dysplasia, or villous adenoma

Colonoscopy vs Flex Sig

	% pts with proximal neoplasm if distal bowel showed			
Source	Advanced neoplasm	Tubular adenoma	No polyp	
Lieberman NEJM 2000	14.6	6.8	2.7	
Imperiale NEJM 2000	11.5	7.1	1.5	

Colonoscopy and CRC Death

Table 3. Results of Primary Analysis: Odds Ratio for the Association Between Colonoscopy and Colorectal Cancer Death*

Model	Odds Ratio (95% CI)			
	All Cancer	Right-Sided Cancer	Left-Sided Cancer	Undefined Site of Cancer
Attempted colonoscopy				
None	1.00	1.00	1.00	1.00
Any	0.69 (0.63–0.74)	1.07 (0.94–1.21)	0.39 (0.34–0.45)	0.90 (0.75–1.08)
Completeness of colonoscopy				
None	1.00	1.00	1.00	1.00
Complete	0.63 (0.57-0.69)	0.99 (0.86-1.14)	0.33 (0.28-0.39)	0.90 (0.73-1.10)
Incomplete	0.91 (0.78–1.07)	1.35 (1.07–1.69)	0.63 (0.49–0.81)	0.91 (0.61–1.35)

^{*} Conditional logistic regression, adjusted for Charlson Comorbidity Index score.

Baxter, N. N. et. al. Ann Intern Med 2009;150:1-8

Colonoscopy and CRC Death

Table 4. Results of Analysis Stratified by Age and Sex: Odds Ratio for the Association Between Colonoscopy and Colorectal Cancer Death*

Variable		Odds Ratio (95% CI)				
	All Cancer	Right-Sided Cancer	Left-Sided Cancer	Undefined Site of Cancer		
Stratified by age at diagnosis <70 y						
No colonoscopy	1.00	1.00	1.00	1.00		
Complete colonoscopy	0.47 (0.39-0.55)	0.92 (0.72-1.18)	0.22 (0.16-0.30)	0.52 (0.33-0.84)		
Incomplete colonoscopy	0.78 (0.58-1.05)	1.14 (0.75–1.73)	0.53 (0.33-0.86)	0.92 (0.38-2.21)		
≥70 y						
No colonoscopy	1.00	1.00	1.00	1.00		
Complete colonoscopy	0.72 (0.64-0.81)	1.03 (0.86-1.22)	0.41 (0.33-0.50)	1.06 (0.84-1.33)		
Incomplete colonoscopy	0.98 (0.81–1.17)	1.46 (1.11–1.93)	0.68 (0.51–0.92)	0.92 (0.59–1.43)		
Stratified by sex						
Men						
No colonoscopy	1.00	1.00	1.00	1.00		
Complete colonoscopy	0.59 (0.52-0.67)	1.02 (0.84-1.25)	0.33 (0.26-0.41)	0.80 (0.60-1.07)		
Incomplete colonoscopy	0.75 (0.58-0.96)	1.01 (0.67-1.51)	0.56 (0.39-0.081)	1.00 (0.55-1.84)		
Women						
No colonoscopy	1.00	1.00	1.00	1.00		
Complete colonoscopy	0.68 (0.59-0.78)	0.96 (0.79-1.17)	0.33 (0.25-0.44)	1.03 (0.76-1.38)		
Incomplete colonoscopy	1.05 (0.86–1.29)	1.57 (1.19–2.08)	0.71 (0.50–1.00)	0.85 (0.50–1.44)		

^{*} Conditional logistic regression, adjusted for Charlson Comorbidity Index score.

Baxter, N. N. et. al. Ann Intern Med 2009:150:1-8

CANCER CENTER

US Preventive Services Task Force March 2008 When to stop?

SCREENING FOR COLORECTAL CANCER CLINICAL SUMMARY OF U.S. PREVENTIVE SERVICES TASK FORCE RECOMMENDATION

Population	Adults Age 50 to 75 Years*	Adults Age 76 to 85 Years*	Adults Older Than 85 Years*	
	Screen with high-sensitivity FOBT sigmoidoscopy, or colonoscopy	Do not screen routinely	Do not screen	
Recommendation	Grade: A	Grade: C	Grade: D	
	For all populations, evidence is insufficient to assess the benefits and harms of screening with computed tomographic colonography and fecal DNA testing. Grade: I (Insufficient evidence)			

U.S. Preventive Services Task Force, Ann Intern Med 2008;0:0000605-200811040-00243-E-243

Colon Cancer Screening Average Risk

- Colonoscopy beginning at age 50 every 10 years
- If pathology found, follow the recommendation of the gastroenterologist
 - For low risk adenoma, they will recommend repeat screening at 5 years
 - For high risk adenoma, they will recommend repeat screening at 3 years

Colon Cancer Increased Risk

- •Have you ever had colorectal cancer or an adenomatous polyp?
- •Have you had inflammatory bowel disease (ulcerative colitis or Crohn's disease)?
- •Has a family member had colorectal cancer or an adenomatous polyp? If so, how many, was it a first-degree relative (parent, sibling, or child), and at what age was the cancer or polyp first diagnosed?

Colon Cancer Screening Made Easy

- •Have you ever had colorectal cancer or an adenomatous polyp? → Colonoscopy q 3-5years
- •Have you had inflammatory bowel disease (ulcerative colitis or Crohn's disease)?
- •Has a family member had colorectal cancer or an adenomatous polyp? If so, how many, was it a first-degree relative (parent, sibling, or child), and at what age was the cancer or polyp first diagnosed?

Colon Cancer Screening Made Easy

- •Have you ever had colorectal cancer or an adenomatous polyp? → Colonoscopy q 3-5years
- •Have you had inflammatory bowel disease (ulcerative colitis or Crohn's disease)? → refer to Gastroenterology
- •Has a family member had colorectal cancer or an adenomatous polyp? If so, how many, was it a first-degree relative (parent, sibling, or child), and at what age was the cancer or polyp first diagnosed?

Colon Cancer Screening Made Easy

Has a family member had colorectal cancer or an adenomatous polyp? If so, how many, was it a first-degree relative (parent, sibling, or child), and at what age was the cancer or polyp first diagnosed?

- •Begin screening at least 10 years younger than the youngest member in the family with colon cancer
- •Begin screening at age 40 if first degree relative had colon cancer <60
- •Refer to High Risk Genetics if HNPCC suspected

Colon Cancer: Screening CT Colonography

- Appears to be just as good for lesions that are 1cm in size
- Very good for patients who have incomplete colonoscopies
- Still have to give GI prep
 - Novel preps under investigation
- Not able to biopsy

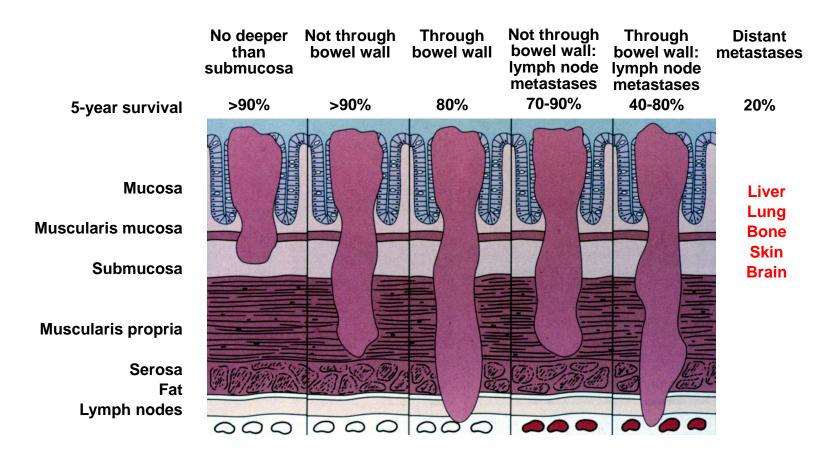
- Nearly half of colon cancers are found in the right side of the colon
 - Trend is for unknown reasons
 - Different biology (e.g. braf mutation)
- Presenting symptoms (ie bleeding, change in bowel habits, anemia, obstuction) depend on location
- Clinical pearls

Clinical pearls

 If you feel something on rectal exam, never assume that it is an internal hemorrhoid

• Clinical pearls

- If you feel something on rectal exam, never assume that it is an internal hemorrhoid
- A walled off perforation from a colon cancer can masquerade as diverticulitis

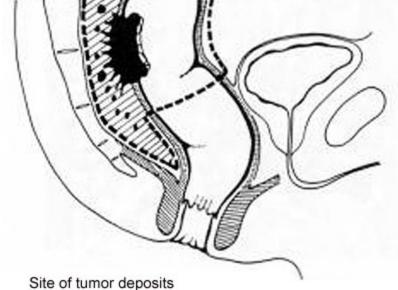


Clinical pearls

- If you feel something on rectal exam, never assume that it is an internal hemorrhoid
- A walled off perforation from a colon cancer can masquerade as diverticulitis
- If an Fe def anemia workup has been done and nothing found, repeat the colonoscopy...right sided lesions could have been missed

Staging of Colorectal Cancer

Adapted from Skarin AT, ed. Atlas of Diagnostic Oncology. 3rd ed. St. Louis, Mo: Mosby Inc; 2003:155.


Colon Cancer Treatment

- Stage I: surgery
 - Laparoscopic or open colectomy
- Stage II: surgery + ?chemotherapy
- Stage III: surgery + chemotherapy
- Stage IV: chemotherapy + ?surgery
 - Patients with isolated liver or lung metastases can be cured with surgical resection

Rectal Cancer: Total Mesorectal Excision

Source: Cancer Control © 2003 H. Lee Moffitt Cancer Center and Research Institute, Inc.

Rectal Cancer Treatment

- Stage I: surgery
- Stage II: surgery + chemotherapy + radiation
- Stage III: surgery + chemotherapy + radiation
- Stage IV: chemotherapy + ?surgery

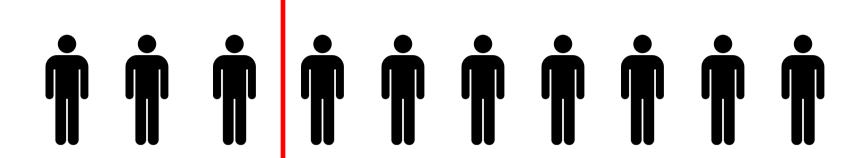
Colorectal Cancer Surveillance

- Colonoscopy 1 year after diagnosis and then every 3-5 years
- For stage 2 and 3, every 3 month CEA/LFTs/physical exam and annual CT for 3 years. Then follow annually with cea and LFTs until year 5
- Lifestyle/Dietary Changes: Very good retrospective or observational evidence
 - Exercise, ASA, Vit D
 - ?Red meat

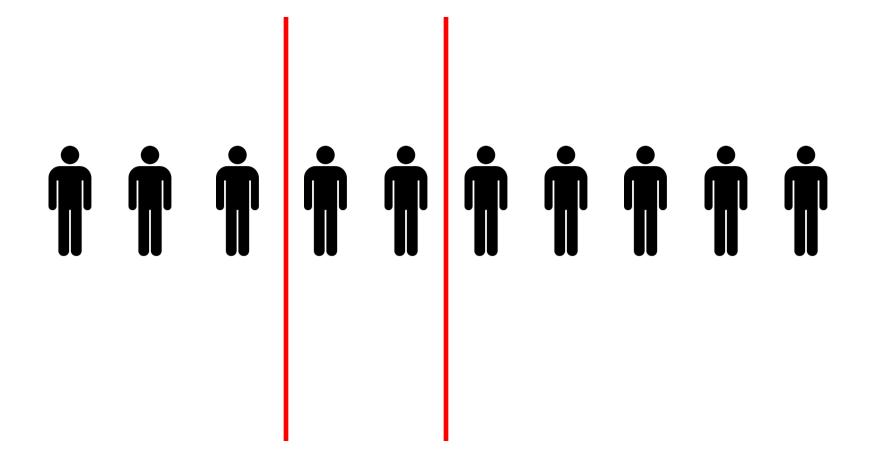
Colorectal Cancer:

3 reasons for seeing an oncologist

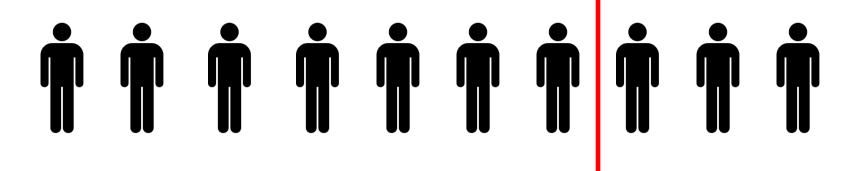
- Be Cured
- Live Longer
- Feel Better



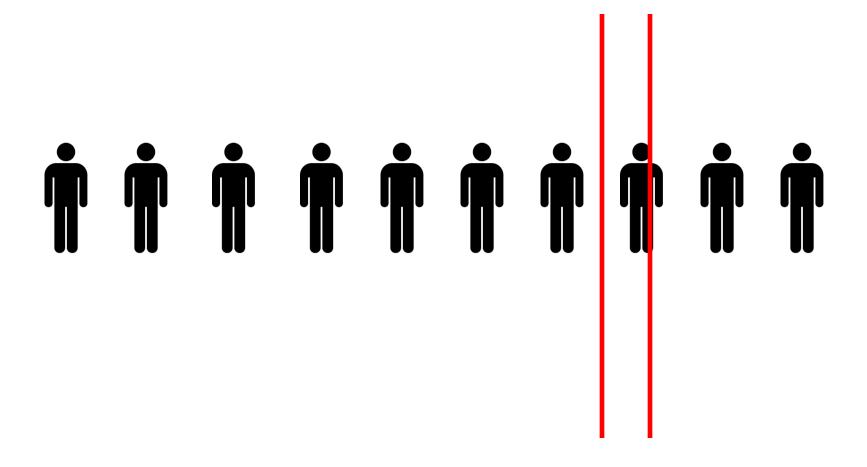
How to Explain to Patients Stage 3c



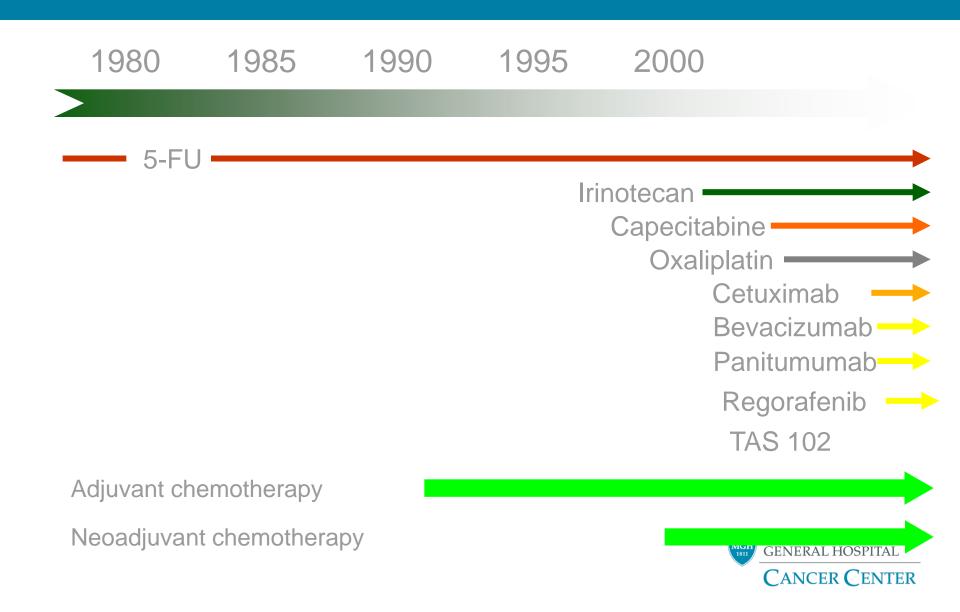
How to Explain to Patients Stage 3c



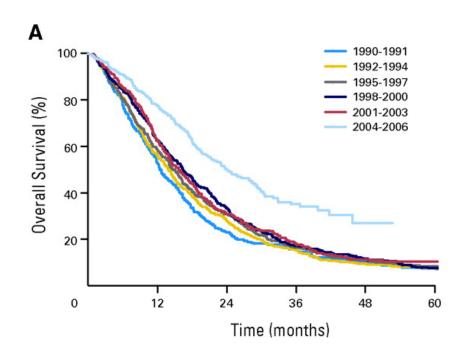
How to Explain to Patients Stage 3c

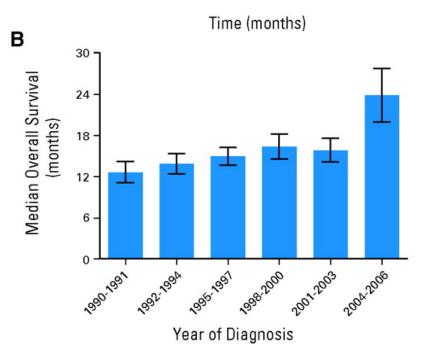


How to Explain to Patients Stage 3a



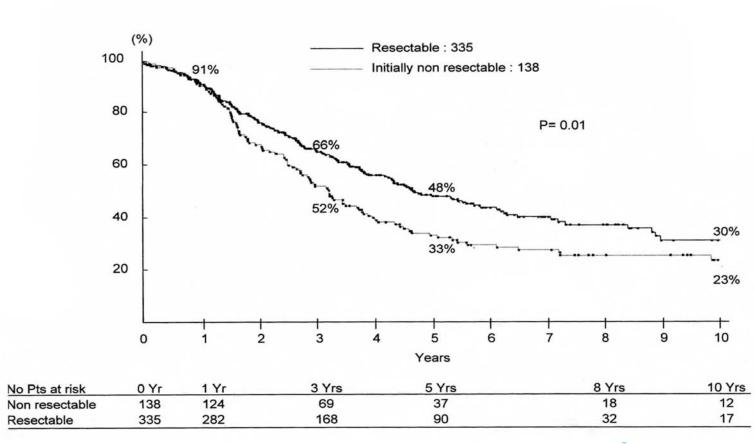
How to Explain to Patients Stage 3a

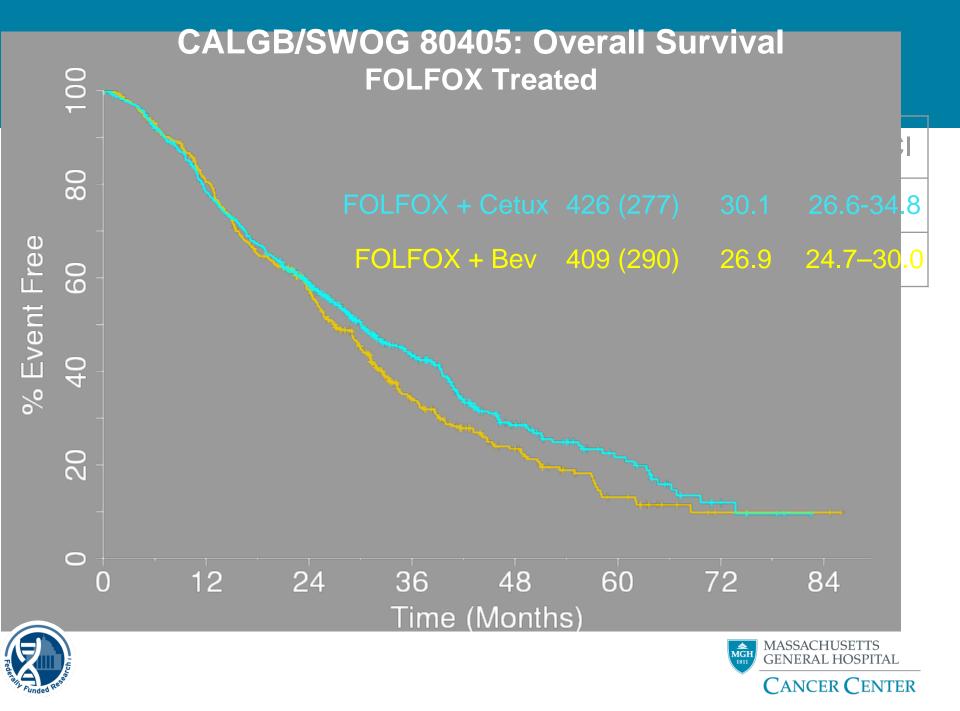


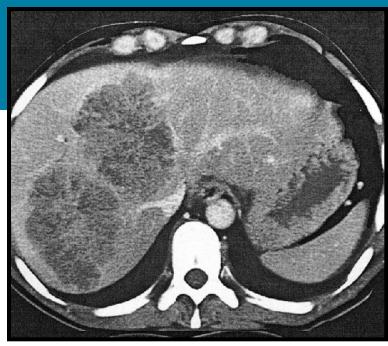


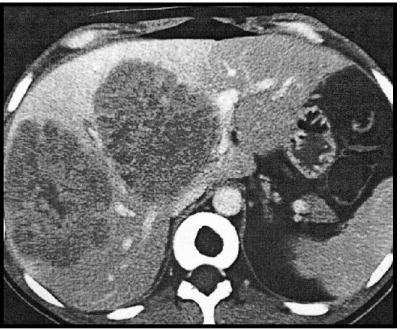
Advances in the Treatment of Colorectal Cancer

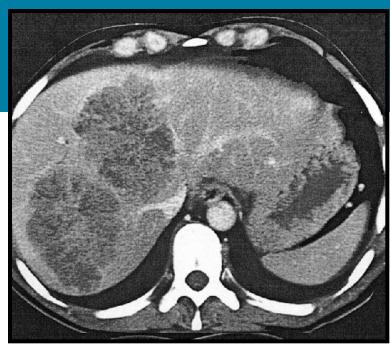
Stage 4 Colon Cancer: Improved Survival

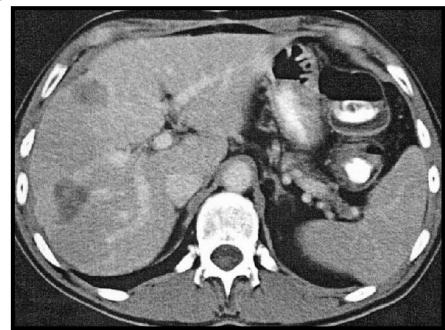


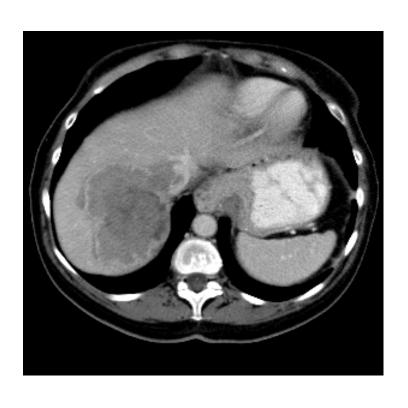

Kopetz et al JCO 2012



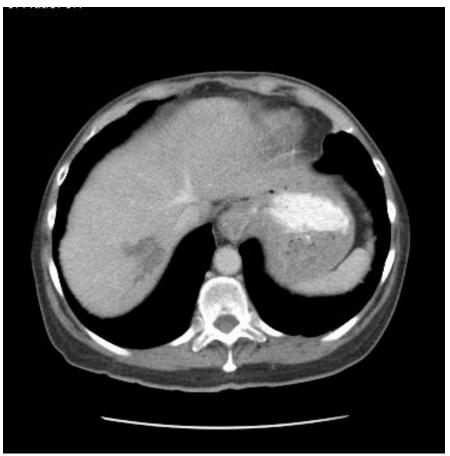

Overall Survival for Liver Resection


AL





Colon Cancer Case presentation



- Left hemicolectomy for T4, N1, M1 colon cancer
- Treated with chemotherapy

Colon Cancer Case presentation

Colorectal Cancer Summary

- Obesity and Exercise
- Colonoscopy: Left >> Right
- Identification of high risk patients is key in offering appropriate screening
- All stage III and some stage II patients will get 6 months of adjuvant therapy
- Treatment of metastatic disease has changed dramatically in last 10 years