Contemporary Management Strategies in Diabetes 2022

Enrico Cagliero, MD
MGH Diabetes Center
Harvard Medical School

Conflict of Interest Disclosure

Enrico Cagliero, MD

has no significant relationships with industry to report

Contemporary Management Strategies in Diabetes

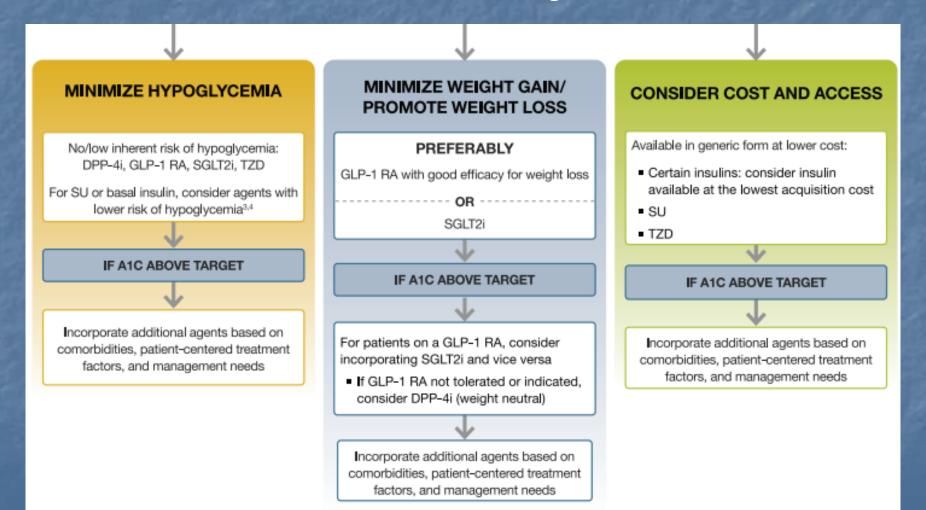
- Current guidelines
 - A1c goals
 - Pharmacologic treatment of hyperglycemia
- Novel Therapies
 - GLP-1 Receptor Agonists
 - DPP-4 Inhibitors
 - SGLT-2 Inhibitors
- CVD/CKD risk reduction

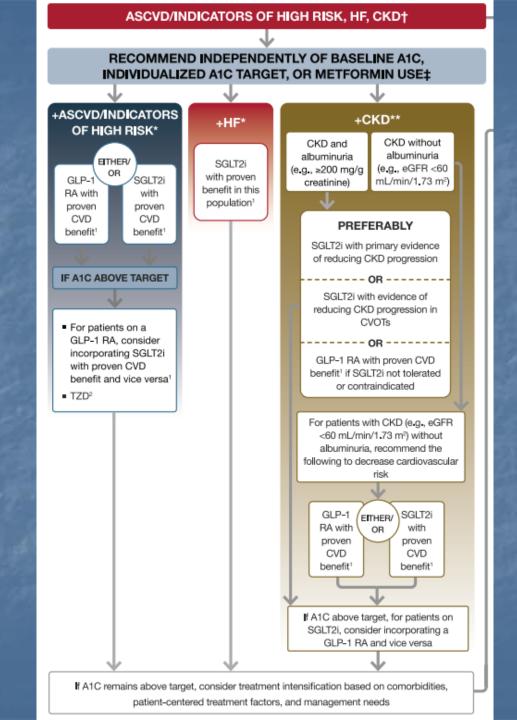
Goals of Treatment

- Avoid acute complications of diabetes
- Prevent micro and macrovascular complications
- Minimize hypoglycemia
- Minimize weight gain and/or help weight loss
- Increase quality of life

HbA1c Goals

- 2018 American College of Physicians: Clinicians should aim to achieve an HbA_{1c} level between 7% and 8% in most patients with type 2 diabetes.
- 2018 American Association of Clinical Endocrinologists: the AACE supports a goal A1c of < 6.5% for most patients</p>
- 2021 American Diabetes Association: An A1c goal for many nonpregnant adults of < 7% is appropriate. Less stringent goals (A1c < 8.0%) may be appropriate for patients with a history of severe hypoglycemia, limited life expectancy, advanced micro or macrovascular complications, or extensive comorbid conditions.


Individualize A1c goals!


Standards of Medical Care in Diabetes - 2022

Pharmacologic Approaches to Glycemic Management

Pharmacologic Treatment of Hyperglycemia in Adults with Type 2 diabetes First line therapy generally includes Metformin and Lifestyle modifications

In absence of ASCVD, indicators of high risk, heart failure, CKD

Diabetes Care 2022;45

(supplement1):S125-S143

If injectable therapy is needed to reduce A1C1

Consider GLP-1 RA in most patients prior to insulin²

INITIATION: Initiate appropriate starting dose for agent selected (varies within class)

TITRATION: Titrate to maintenance dose (varies within class)

If above A1C target

Add basal insulin3

Choice of basal insulin should be based on patient-specific considerations, including cost. Refer to **Table 9.4** for insulin cost information.

Add basal analog or bedtime NPH insulin

INITIATION: Start 10 units per day OR 0.1-0.2 units/kg per day

TITRATION:

- Set FPG target (see Section 6: Glycemic Targets)
- Choose evidence-based titration algorithm, e.g., increase 2 units every 3 days to reach FPG target without hypoglycemia
- For hypoglycemia determine cause, if no clear reason lower dose by 10-20%

Assess adequacy of basal insulin dose

Consider clinical signals to evaluate for overbasalization and need to consider adjunctive therapies (e.g., basal dose more than ~0.5 units/kg/day, elevated bedtime-morning and/or post-preprandial differential, hypoglycemia [aware or unaware], high variability)

If above A1C target

Add prandial insulin5

Usually one dose with the largest meal or meal with greatest PPG excursion; prandial insulin can be dosed individually or mixed with NPH as appropriate

INITIATION:

- 4 units per day or 10% of basal insulin dose
- If A1C <8% (64 mmol/mol) consider lowering the basal dose by 4 units per day or 10% of basal dose

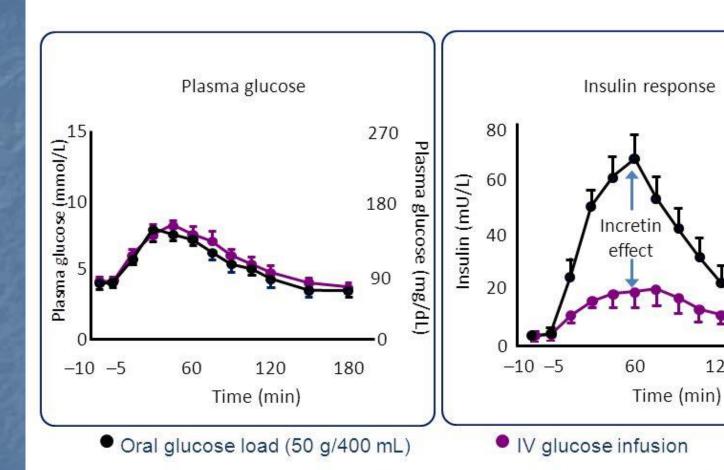
TITRATION:

- Increase dose by 1-2 units or 10-15% twice weekly
- For hypoglycemia determine cause, if no clear reason lower corresponding dose by 10-20%

Diabetes Care 2022;45 (supplement1):S125-S143

Summary

- Start with monotherapy with Metformin unless A1c > 9% (consider starting with dual therapy), or A1c > 10% (consider injectable therapy)
- If monotherapy not effective after 3 months, proceed to dual therapy
- For patients with CVD, CKD or HF use GLP-1 RA or SGLT-2 inhibitors independent of baseline A1c
- If injectable therapy is needed, consider GLP-1 RA in most patients prior to insulin

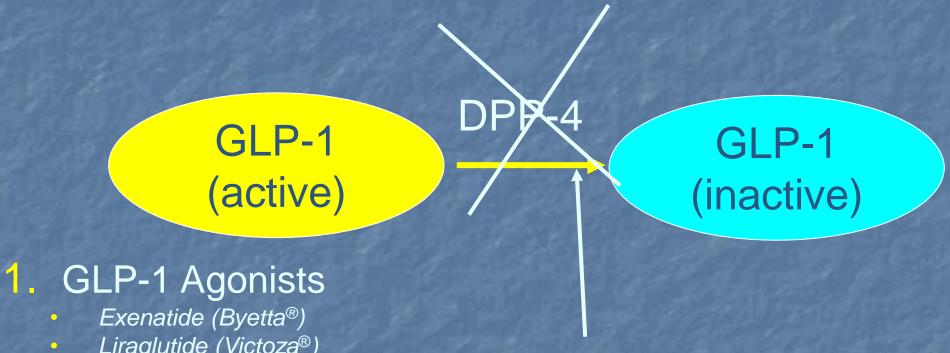

Novel Therapies

GLP-1 agonists
DPP-4 inhibitors
SGLT-2 inhibitors

Incretin Hormones

- Peptide hormones released by cells in the GI tract in response to nutrient stimulus
- Most potent is Glucagon-Like Peptide 1 (GLP-1)
- GLP-1 stimulates insulin secretion, suppresses glucagon secretion, delays GI tract motility and decreases appetite
- In patients with type 2 diabetes GLP-1 levels are decreased
- GLP-1 is rapidly degraded by the enzyme dipeptidyl peptidase IV (DPP IV)

The Incretin Effect

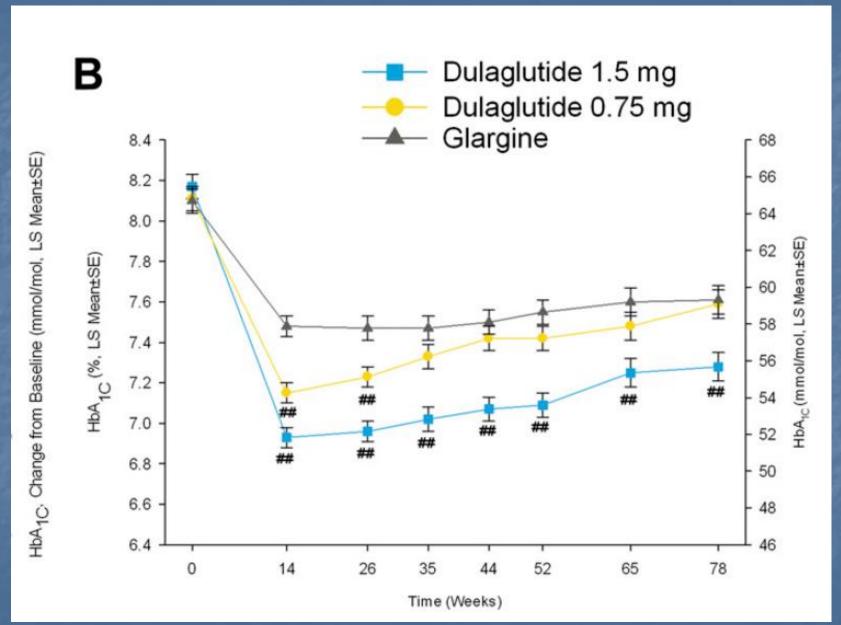


Insulin response is greater following oral glucose than IV glucose, despite similar plasma glucose concentration.

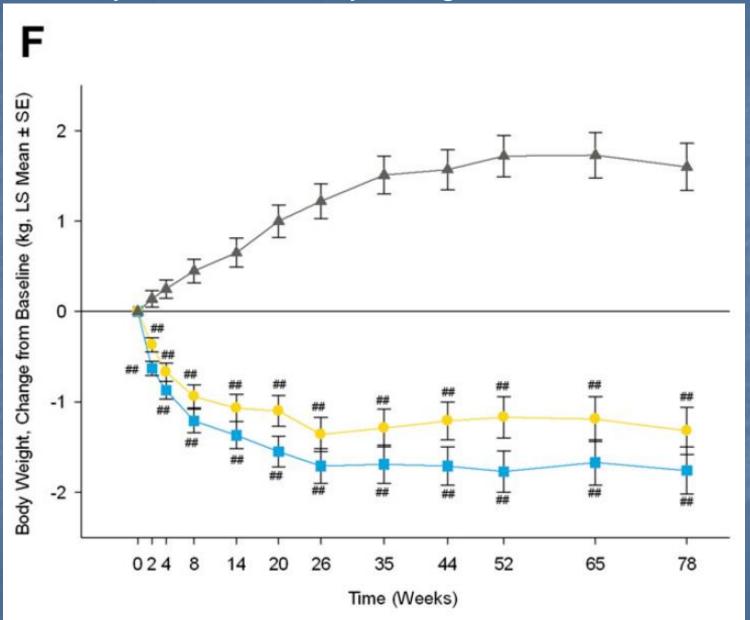
120

180

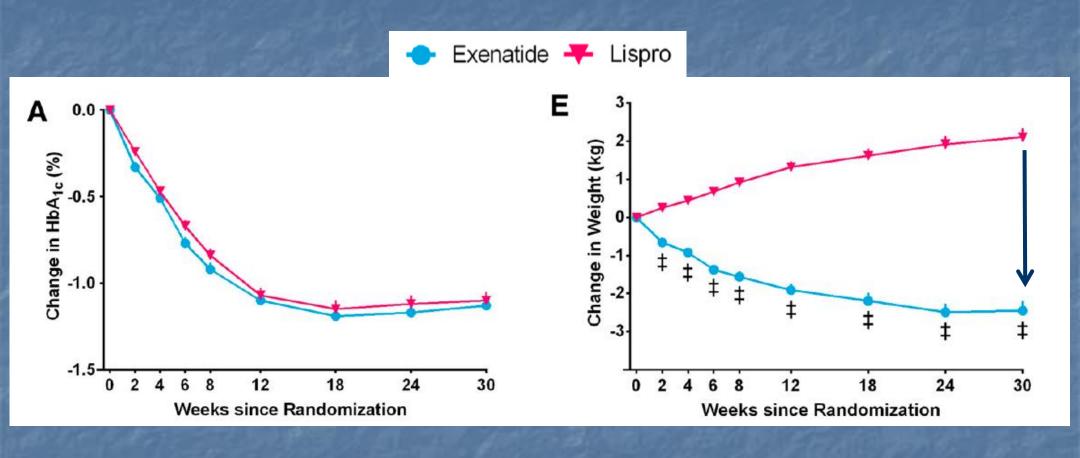
Strategies To Prolong GLP-1 Action



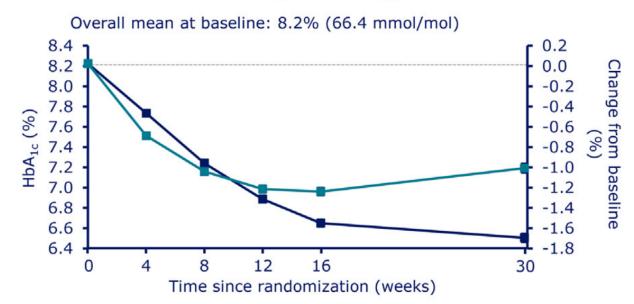
- Liraglutide (Victoza®)
- Exenatide ER (Bydureon®)
- Dulaglutide (Trulicity®)
- Lixisenatide (Adlyxin®)
- Semaglutide (Ozempic®)
- Oral Semaglutide (Rybelsus®)


2. DPP-4 Inhibitors

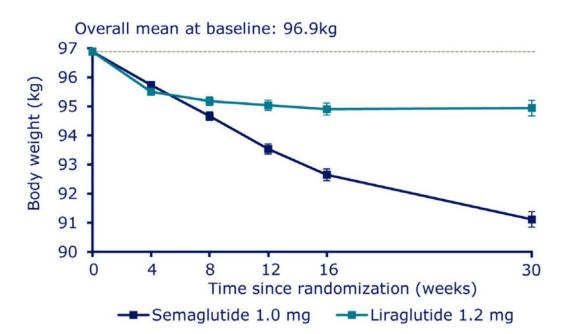
- Sitagliptin (Januvia®)
- Saxagliptin (Onglyza®)
- Linagliptin (Tradjenta®)
- Alogliptin (Nesina®)


Efficacy and Safety of Once-Weekly Dulaglutide Versus Insulin Glargine

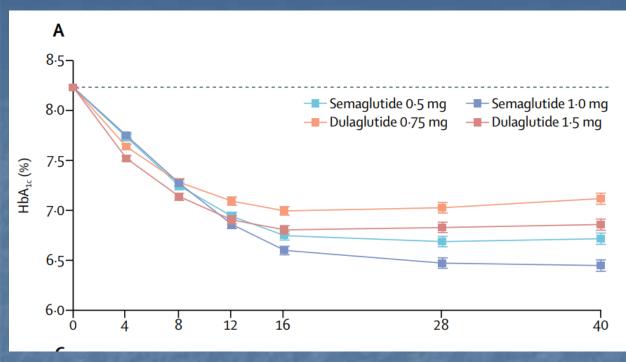
Efficacy and Safety of Once-Weekly Dulaglutide Versus Insulin Glargine

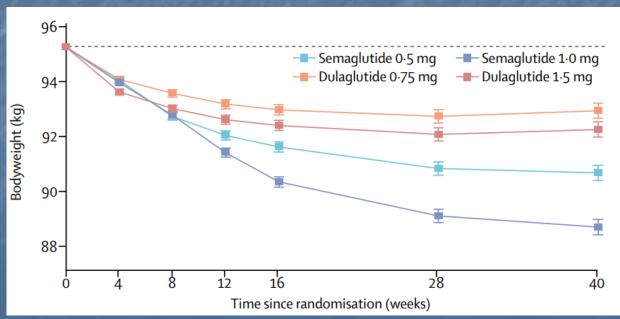


Glucagon-Like Peptide 1 Receptor Agonist or Bolus Insulin with Optimized Basal Insulin in Type 2 diabetes

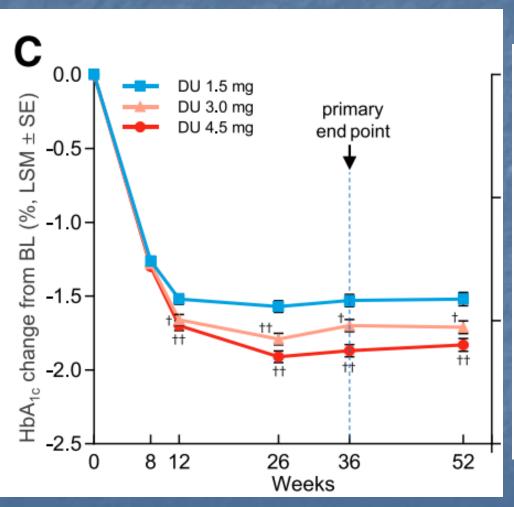


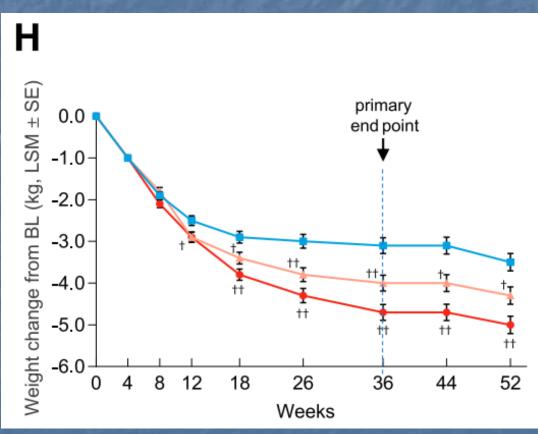
Efficacy and safety of once-weekly Semaglutide 1.0 mg vs once-daily Liraglutide 1.2 mg as add-on to 1–3 oral antidiabetic drugs in subjects with type 2 diabetes (SUSTAIN 10)

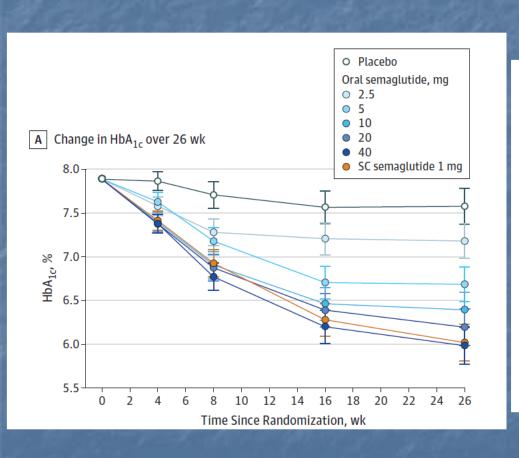

a. Estimated change in HbA_{1c} over time



a. Estimated change in body weight over time


Capehorn MS et al. *Diabetes & Metabolism* 2020;46:100–109




Semaglutide versus Dulaglutide once weekly in patients with type 2 diabetes (SUSTAIN 7): a randomized, open label, phase 3b trial


Efficacy and Safety of Dulaglutide 3.0 mg and 4.5 mg versus Dulaglutide 1.5 mg in Metformin-Treated Patients with Type 2 Diabetes

Oral versus Subcutaneous Semaglutide

GI adverse events of Liraglutide

(A Randomized clinical trial of 3.0 mg of Liraglutide in Weight Management)

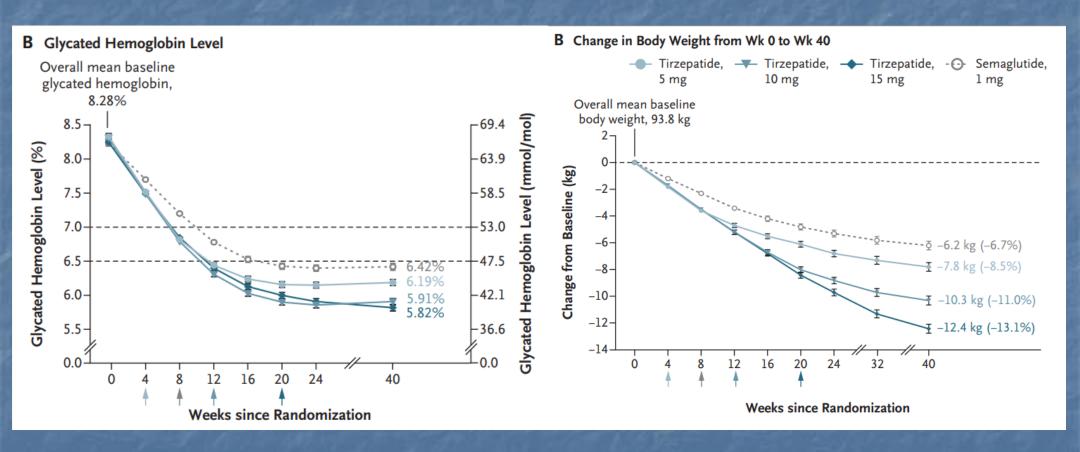
	Liraglutide	Placebo	Difference
Nausea	40	15	25%
Diarrhea	21	9	12
Constipation	20	9	11
Vomiting	16	4	12
Dyspepsia	9	3	6
Abdominal Pain	5	3	2

Incretin-based glucose-lowering medications and the risk of acute pancreatitis and malignancies: a meta-analysis based on cardiovascular outcomes trials

(A)	Study	Compound	Rate ratio (95 % Cl) Z-value	p-value	Pancreatitis
. ,	Pfeffer et al. 2015	Lixisenatide	0.63 (0.20-1.91)	- 0.82-	0.41	
	Marso et al. 2016 a	Liraglutide	0.78 (0.42-1.45)	- 0.78	0.44	
1	Holman et al. 2017	Exenatide q.w.	1.20 (0.67-2.10)	0.60	0.55	*
	Gerstein et al. 2019	Dulaglutide	1.77 (0.90-3.49)	1.65	0.10	
	Hernandez et al. 2018	Albiglutide	1.43 (0.54-3.80)	0.72	0.50	
	Marso et al. 2016	Semaglutide s.c.	0.75 (0.32-1.78)	- 0.65	0.52	
į.	Husain et al. 2019	Semaglutide oral	0.33 (0.04-3.21)	- 0.95	0.34	• •
	All GLP-1 RAs		1.05 (0.78-1.41)	0.31	0.75	•
	Scirica et al. 2013	Saxagliptin	1.88 (0.84-4.21)	1.53	0.13	
1	White et al. 201 3	Alogliptin	1.51 (0.62-3.80)	0.91	0.36	
	Green et al. 2015	Sitagliptin	1.82 (0.87-3.80)	1.60	0.11	
	Rosenstock et al. 2019	Linagliptin	1.75 (0.60-5.23)	1.01	0.31	·•
	All DPP-4 Is		1.75 (1.14-2.70)	2.56	0.01	• • • • • • • • • • • • • • • • • • •
i i					0.01	0.1 1 10 100
(B)	Study	Compound	Rate ratio (95 % C	I) Z-value	p-value	Pancreatic cancer
	Pfeffer et al. 2015	Lixisenatide	0.33 (0.09-1.23)	- 1.65	0.10	- • ·
	Marso et al. 2016 a	Liraglutide	2.60 (0.93-7.30)	1.82	0.07	
	Holman et al. 2017	Exenatide q.w.	0.94 (0.47-1.91)	0.16	0.87	*
	Gerstein et al. 2019	Dulaglutide	1.58 (0.77-3.26)	1.25	0.21	:• -
1	Hernandez et al. 2018	Albiglutide	1.20 (0.37-3.93)	0.30	0.76	
	Marso et al. 2016	Semaglutide s.c.	0.25 (0.03-2.24)	- 1.24	0.22	• •
	Husain et al. 2019	Semaglutide oral	No cases described	i	-	*
	All GLP-1 RAs		1.14 (0.77-1.70)	0.70	0.51	•
	Scirica et al. 2013	Saxagliptin	0.41 (0.15-1.17)	- 1.66	0.10	
	White et al. 2013	Alogliptin	No cas es observed		-	
	Green et al. 2015	Sitagliptin	0.90 (0.37-2.22)	- 0.23	0.82	
	Rosenstock et al. 2019	Linagliptin	2.68 (0.85-8.41)	1.69	0.09	
	All DPP-4 Is		0.94 (0.52-1.68)	- 0.22	0.83	🔶
otos Obos	Matah 2020:22:	222 = 24			0.01	0.1 1 10 100

GLP-1 Receptor Agonists: Daily Agents

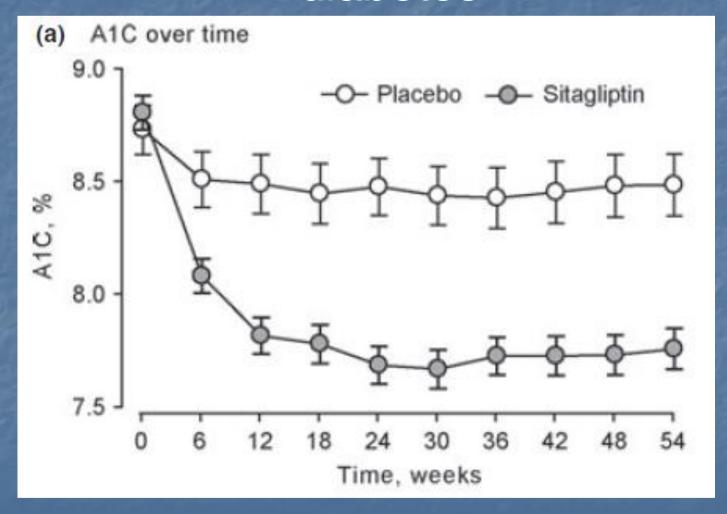
- Exenatide (Byetta®)
 - Twice/day sc. Injections
 - Start with 5 mcg bid within 60 minutes of a meal and after 1 month increase the dose to 10 mcg bid if eGFR > 30 ml/min
 - Should not be used in patients with eGFR < 30 ml/min</p>
- Liraglutide (Victoza®)
 - Once day sc injection, "use with caution in renal impairment"
 - Start with 0.6 mg qd for 1 week, then increase to 1.2 mg qd; may go to 1.8 mg qd
 - No dosage adjustment is recommended in patients with renal impairment
- Lixisenatide (Adlyxin®)
 - Initiate at 10 mcg daily, can increase to 20 mcg daily after 2 weeks.
 - No dose adjustments for patients with moderate renal impairment (eGFR >30 ml/min), minimal experience for patients with severe renal impairment
- Oral Semaglutide (Rybelsus®)
 - Daily pill take with water 30 minutes before food, water or medications (3 mg, 7 mg and 14 mg)
 - No dose adjustment is recommended for patients with renal impairment


GLP-1 Receptor Agonists: Weekly Agents

- Exenatide ER (Bydureon®)
 - Once per week injection 2 mg
 - Not recommended in patients with eGFR < 45 ml/min
- Dulaglutide (Trulicity®)
 - Once per week, start 0.75 mg, can increase to 1.5 mg, 3 mg, or 4 mg.
 - No dose adjustment needed in patients with renal impairment including end stage renal disease
- Semaglutide (Ozempic®)
 - Start at 0.25 mg weekly, after 4 weeks can increase to 0.5 mg weekly and if not at goal can increase to 1 mg after another 4 weeks, recently approved dose of 2 mg
 - No dose adjustments for patients with renal impairment including end stage renal disease

Tirzeparide

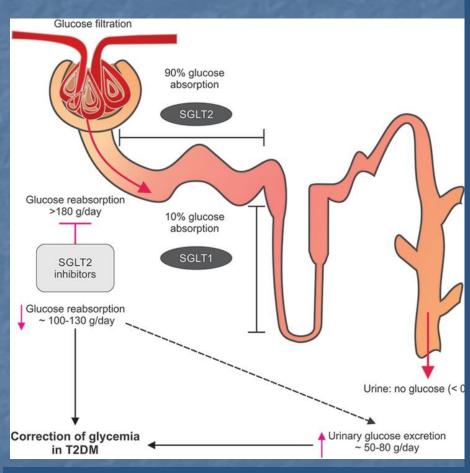
- Dual GLP-1 and GIP receptor agonists
- Weekly administration (dose starting at 2.5 mg and titrating up to 15 mg)
- Can be used in patients with CKD and ESRD
- Similar side effect profile as GLP-1 RA


Tirzeparide

GLP-1 agonist: Take home message

- Powerful hypoglycemic effect with weight loss and no hypoglycemia
- Can be used instead of insulin in most patients with type 2 diabetes
- Can be added to basal insulin instead of adding prandial insulin
- Not tolerated because of GI side effects in ~ 10-15% of patients
- Most, but not all GLP-1 agonists provide CVD benefits in patients with established CVD or at high risk for CVD
- Possible CKD protection

Efficacy of sitagliptin in patients with type 2 diabetes


DPP-4 Inhibitors

- Sitagliptin (Januvia®) 2006
 - 100 mg po qd (reduce dose in renal insufficiency)
- Saxagliptin (Onglyza®) 2009
 - 2.5 or 5 mg po qd (reduce dose in renal insufficiency)
- Linagliptin (Tradjenta®) 2011
 - 2.5 mg po qd (no renal adjustment)
- Alogliptin (Nesina®) 2013
 - 25 mg po qd (reduce dose in renal insufficiency)

DPP-4 Inhibitors: Take home message

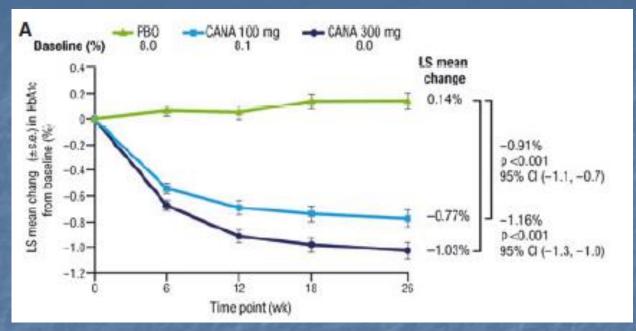
- Less powerful than sulfonylureas
- Minimal risk of hypoglycemia
- No weight gain
- Easy to use and tolerate
- Neutral effects on cardiovascular disease

Sodium-glucose co-transporter-2 inhibitors

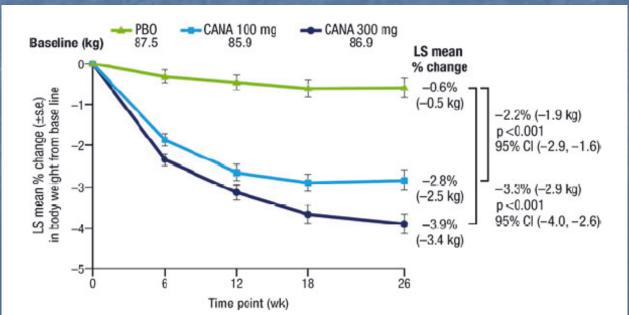
Kalra S, Singh V, Nagrale D. Sodium-Glucose Cotransporter-2 Inhibition and the Glomerulus: A Review. *Advances in Therapy*. 2016;33(9):1502-1518.

SGLT2:

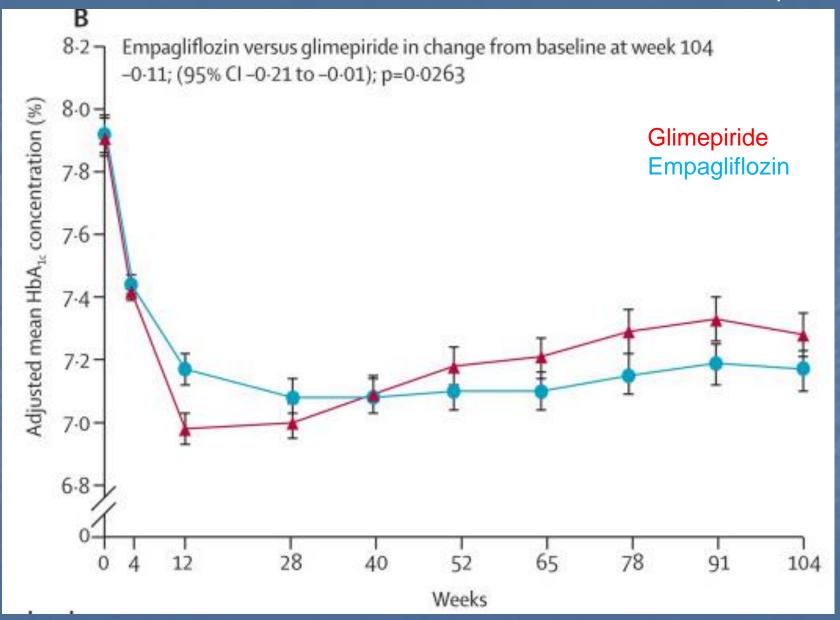
 High-capacity, low-affinity: 90% glucose reabsorption, located in segment 1 proximal convoluted tubule


Blockade of SGLT-2

- Osmotic diuresis (glucosuria)
- Lower blood pressure (2-5 mmHg)
- Decreased uric acid
- Self-limited glucose lowering
- Self-limited weight loss


Drugs

 Canagliflozin, empagliflozin, dapagliflozin, ertugliflozin


Effects of Canaglifozin in Patients with Type 2 Diabetes

Diabetes, Obesity and Metabolism 15:372-382, 2013

Comparison of Empagliflozin and Glimepiride as add-on to Metformin in patients with type 2 diabetes: a 104 week randomized, active controlled, double-blind, phase 3 trial

Adverse Events in the EMPA-REG OUTCOME Trial

	Placebo	Empagliflozin 10 mg	Empagliflozin 25 mg
UTI male	9	11	10%
UTI female	41	36	37
Gen. Infection male	2	5	5
Gen Infection female	3	9	11

SGLT-2 Inhibitors: Clinical summary

- Variable HbA1c reduction
 - -0.5% to 2.5%, depending on starting point
- Weight reduction
 - ~2.5 kg, stabilizes
- Hypoglycemia only with insulin or sulfonylurea
- Decreased efficacy with decreasing GFR
 - Contraindicated GFR< 30 ml/min

- Adverse effects
 - Mycotic genital infections
 - Women >> men
 - Fournier Gangrene
 - 1/10,000 men, NS
 - Calciuria
 - Bone loss
 - Rarely, euglycemic DKA
 - Especially in patients with type
 1 diabetes, but also in patients with insulin deficient type 2 diabetes
 - Trigger: stress (→increased glucose demand) + ketosis + ongoing osmotic diuresis and glucosuria→DKA)

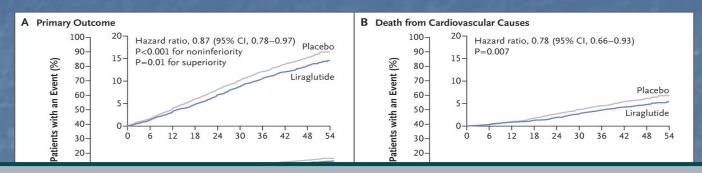
SGLT-2 Inhibitors

- Canagliflozin (Invokana®) 2013
 - Canagliflozin should not be started in patients with eGFR <
 45 mg/min
 - Doubles the risk of lower limb amputation
 - 100 mg qd, if eGFR> 60 mg/min can increase to 300 mg qd
- Dapagliflozin (Farxiga®)2014
 - 5 or 10 mg qd, do not use if eGFR< 60 mg/min
- Empagliflozin (Jardiance®) 2014
 - 10 to 25 mg qd, do not use if eGFR < 45 mg/min
- Ertugliflozin (Steglatro®) 2017
 - 5 to 15 mg qd, initiation or continuation of use is not recommended in patients with eGFR < 60 mg/min,</p>

SGLT-Inhibitors: Take Home Messages

- Powerful hypoglycemic effect
- Mild weight loss
- No hypoglycemia (unless used in combination with insulin or sulfonylureas)
- Well tolerated with main side effects increase in genital yeast infections
- Do not use when eGFR < 30</p>
- Significant decrease in heart failure hospitalization,
 CVD events and CKD outcomes

CVD and CKD Reduction


Summary of early CVD Outcomes Trials

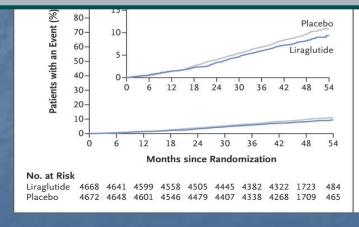
- All cardiovascular disease outcomes trials have enrolled people at high risk of CVD outcomes
- Most have had a small difference in glycemic control between the intervention and control group
 - On the order of 0.5% A1C
- It seems likely that differences in glycemic control of this magnitude, in this population, have no impact on cardiovascular disease risk

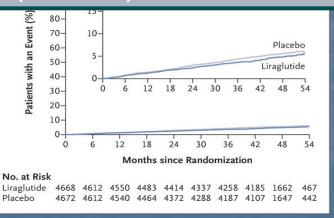
Large CV Outcomes Trials in Diabetes post-2008

Study	SAVOR/	EXAMINE		TECOS		CAROLIMA	CARMELINA
DPP4-i	saxagivtin	aloglistin		sitagilytin		linagliptin	linasliptin
Comparato r	PlacTRAL	plac TRAL NEUTRAL		NEUTRAL		sulfa UTRAL NEUTRAL	place RAL NEUTRAL
N	16,500	5,400		14,000		6,000	0,300
Results	2013	2013		2015		2017	2017
Study	LEADER	ELIXA.		SUSTAIN 6		EXSCEL	REWIND
GLP1-RA	liraglutide	lixisenatide		semaglutid		exenative LR	dulayutide
Comparato r	placei	NEUTRAL NEUTRAL		placebo		Plac NEUTRAL NEUTRAL 400	platebo
N	16,500	14,000		6,000		5,400	8,300
Results	2016	2015		2016		2018	2019
Study	EMPA-R	.G	CANVAS			DECLARE	VERTIS CV
SGLT-2-i	empaglifozin		canagliflozin		d	lapagliflozin	ertugliflozin
Comparato r	placebo		placebo			placebo	plac RAL NEUTRAL
N	7300		4300			22,200	3900
Results	2015		2017		Slide co	2019 Jurtesy of Silvio Inzuco	2020 chi, Yale

Liraglutide: LEADER Outcomes

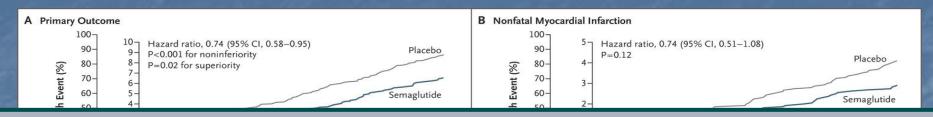
Primary outcome


(CVD death, non-fatal MI, stroke) HR 0.87 (0.78-0.97)


CVD Death

All-cause Death

HR 0.78 (0.66-0.93)


HR 0.85 (0.74-0.97)

Marso SP et al. N Engl J Med 2016.

Semaglutide: SUSTAIN-6 Outcomes

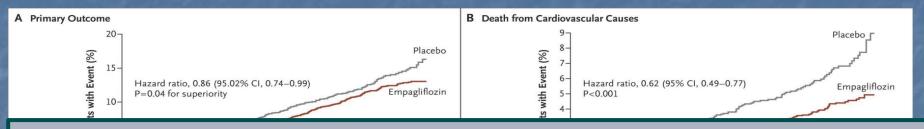
Primary outcome

(CVD death, non-fatal MI, stroke)

HR 0.74 (0.58-0.95)

CVD Death

HR 0.98 (0.65-1.48)

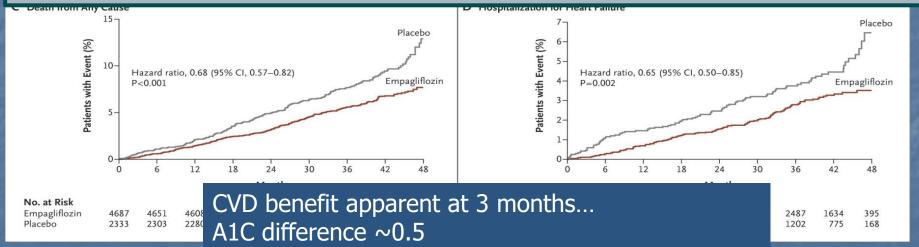

All-cause Death

HR 1.05 (0.74-1.50)

Weight and glycemic control improved most with highest dose semaglutide, with treatment difference of 4.3 kg and HbA1c of 1.0%

Empagliflozin: EMPA-REG CVD Outcomes

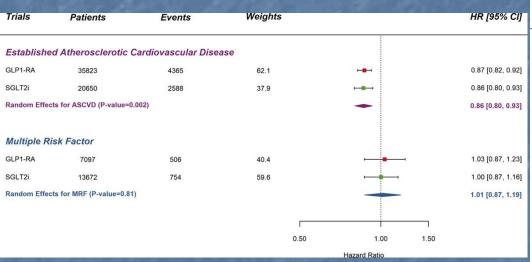
Primary outcome

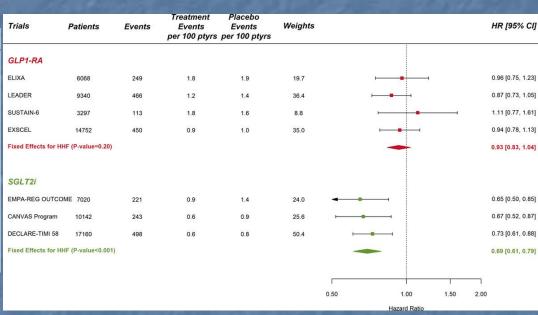

(CVD death, non-fatal MI, stroke) HR 0.86 (0.74-0.99)

CVD Death

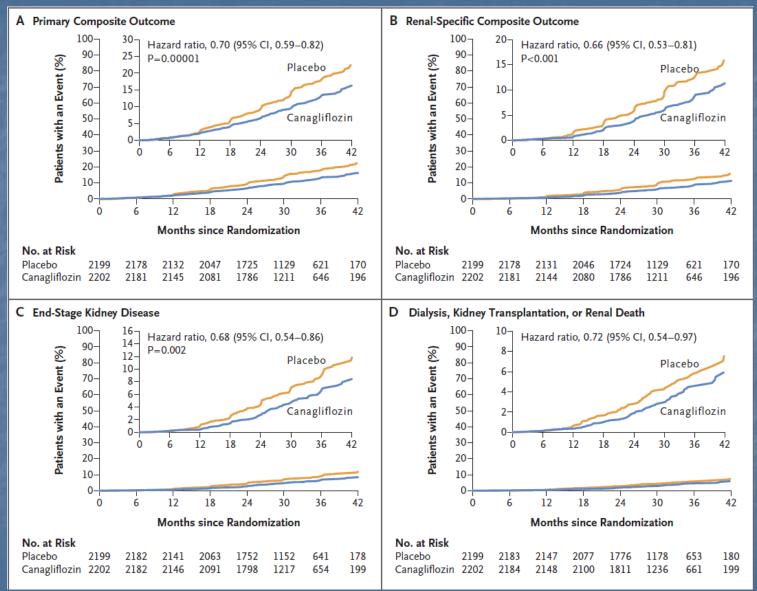
All-cause Death

HR 0.62 (0.49-0.77)

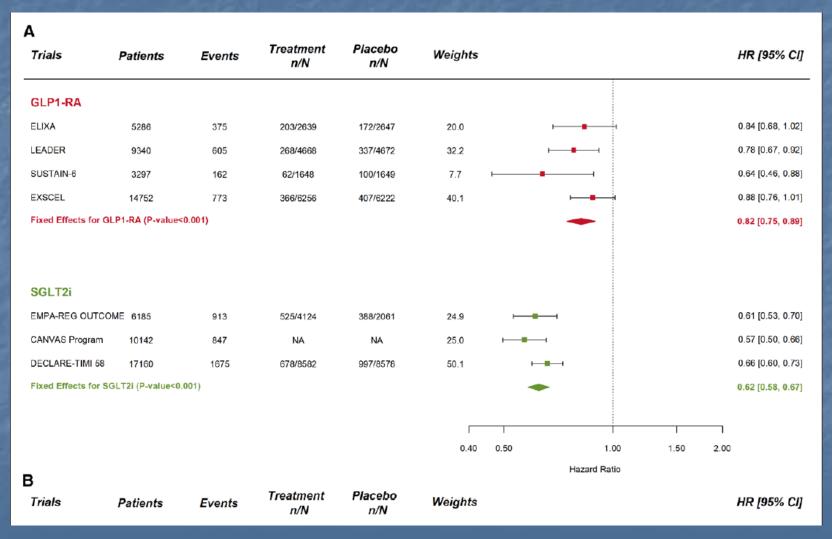

HR 0.68 (0.57-0.82)



Meta-analysis of Cardiovascular Outcomes Trials


Effect on composite of myocardial infarction, stroke and cardiovascular death

Effect on hospitalization for heart failure



Canagliflozin and Renal Outcomes: the Credence Trial

Meta-analysis of GLP-1 agonists and SGLT-2 inhibitor on Renal End Points

CVD and CKD Reduction: Take Home Messages

- Long acting GLP-1 agonists and SGLT-2 inhibitors are both effective at reducing CVD disease in patients with pre-existing CVD or at high risk
- SGLT-2 inhibitors are also effective at reducing hospitalizations in patients with heart failure
- SGLT-2 inhibitors are effective at reducing CKD end points in patients with baseline eGFR > 30 ml/min
- The long acting GLP-1 agonists effects at reducing the CKD end points are mostly driven by a reduction in macroalbuminuria, excluding that particular outcome there was a non significant effect on the risk of doubling serum creatinine

THANK YOU