Current Management of Type 2 Diabetes

David M. Nathan, M.D. Primary Care Internal Medicine: Principles & Practice October, 2012

Prevalence of Diabetes in the U.S. CDC 2011

26	million
1+	million (0.4%)
24.5	million (8.3%)
18	million (7.0%)
7	million (2.0%)
	26 1+ 24.5 18 7

	1,900,000 cases per year			
GDM	100,000	(3-5% of all pregnancies)		

72 million (20%)

©2011 David M. Nathan

HEALTH CARE BURDEN ASSOCIATED WITH DIABETES IN U.S.

- Most common cause of ESRD in adults
- Most common cause of blindness
- Most common cause of amputations
- 2-5 fold increased risk for CVD

In the aggregate, costs attributed to diabetes total more than \$194 billion dollars per year.*

*ADA, 2011

Pathophysiology of Type 2 Diabetes

Risk for Development of Type 2 Diabetes

Effect of BMI in Women

Age-adjusted RR(%) of Developing DM over 14 yr In women aged 30-55 in 1976

Relationship between Exercise and Incidence of Diabetes

Physicians' Health Study

Manson, Nathan et al. JAMA 1992; 268:63

Physical Activity in US

National Human Activity Pattern Survey

Diabetes Pandemic

Diagnosis of Diabetes: Distribution of FPG and 2hrPG in Four Populations

History of Diagnostic Methods

Paradigm Shift in 1997: Association with Long-term Complications

Expert Committee 1997, WHO consultation 1999

- Based diagnostic glucose levels on association with prevalence of retinopathy in 3 populations: Egyptian, Pima, NHANES
- –Measured retinopathy with photography or dilated fundoscopy
- -Glycemia measured as FPG, 2HPG and A1C

Association of Glycemia with Complications

Retinopathy

Cross-sectional

1997 ADA Expert Committee

Expert Committee on Diagnosis of Diabetes

Technical Attributes of A1C vs FPG

acute stress

everything

~29,000 persons from 13 different population-based cohorts (Asia, Africa, Europe, NA) with HbA1c measurement, fundus photography and standardized measurements

HbA1c by 0.5% intervals

Virtually no moderate retinopathy below an A1c of 6.5%

Response to an Epidemic

Mean Weight Change from Baseline

Percent developing diabetes

All participants-2.8 years

NEJM 2002;346: 393

Lo	ong-term Diabetes Prevention		
	<u>After 2.8 years</u>	After 10 years	
	of DPP	DPP/DPPOS	
ILS	58%	34%	
Metformin	31%	19%	

Other Benefits over Time with ILS (compared with placebo) • Lower HbA1c but less frequent use of meds • Lower BP and lipid levels with less frequent meds

Lancet 2009:374:1677

Implementation

Cost-Effectiveness: 10-Year Within Trial DPP

Cost of prevention is greater for lifestyle (\$4500 in 10 years), than for metformin (\$2400) of for placebo (~\$700)

However, cost of overall medical care is much more with placebo group incurring a cost of \$27,468, metformin \$25,615 and lifestyle \$24,463

Considering costs of care and prevention, in addition to health benefits metformin <u>saves</u> costs and lifestyle costs ~\$800 compared with placebo

Diabetes Care 2012;35:723-30

Primary Prevention Trials

Reduction in Incidence Compared with Control

Response to an Epidemic

UKPDS Results: Establishing Goals

Obese and non-obese treated with conventional vs insulin/sulphonylureas

Mean 7.9%

Mean 7.0%

The worsening HbA1c over time in type 2 diabetes, despite the addition of more medications, was due, in large part to progressive beta-cell failure

> UKPDS Lancet 1998;352; 837.

Microvascular Disease Hazard Ratio

Intensive (SU/Ins) vs. Conventional glucose control

NEJM 2008; 359:

Control and Complications Microvascular

Study	Number	Duration DM (Y)	Duration Study (Y)	A1c (%)	Outcomes
UKPDS Metformin	3,867 753	<1 <1	11.1 10.7	7.9 vs 7.0 8.0 vs 7.4	Advanced eye/kidney
Kumamoto	110	8	8	9.4 vs 7.2	Eye/kidney/nerve
ACCORD ACCORD Eye	10,251 2,856	10	5 4	7.5 vs 6.4 7.5 vs 6.4	Advanced eye and /kidney 3-step change or PDR req. laser
ADVANCE	11,140	8	5	7.3 vs 6.3	Macroalbuminuria
VADT	1,791	11.5	5.6	8.4 vs 6.9	Eye (progression, PDR or ME), Renal (micro to macro, doubling of SeCr), clinical neuropathy

Microvascular Complications

Relationship between Glycemia and Complications

DCCT (Type 1) and UKPDS (Type 2)

Current Mean HbA1c (%)

Current Treatment Goals

		Glucose (mg/dl)		
		HbA1c	Pre-	<u>Post-prandial</u>
•	ADA	< 7.0	70-120	< 180
•	AACE	< 6.5	<u>≤</u> 110	< 140
•	IDF-Europe	< 6.5	< 110	<u>≤</u> 135

Why Not Lower?

- Limited data in HbA1c range < 6.5%, until recently
- Not clear if the increased expense, effort, and risk for hypoglycemia is merited by added benefit
- <u>No</u> data to support benefit of <u>very tight</u> control on CVD
 - ACCORD, ADVANCE, VADT
 - 30-year UKPDS follow-up shows benefit of 7.0 v 7.9%
- ACCORD suggests possible harm

A1c <7% is an appropriate goal for drug treatment for now

Myocardial Infarction Hazard Ratio

Intensive (SU/Ins) vs. Conventional glucose control

NEJM 2008; 359:

ACCORD Study

Action to Control Cardiovascular Risk in Diabetes Study

A Primary Outcome

Standard therapy 5123

4971

4700

3180

1642

499

Figure 1. Median Glycated Hemoglobin Levels at Each Study Visit. I bars denote interquartile ranges.

Fatal, non-fatal MI, stroke, CVD death 25 Hazard ratio: 0.9 (0.78-1.04) 20 Patients with Events (%) **P=0.16** Standard therapy 15-10-Intensive therapy 5. Years No. at Risk Intensive therapy 5128 4843 4390 2839 1337 475 448 Standard therapy 5123 4827 4262 2702 1186 440 395 B Death from Any Cause All cause mortality 25 Hazard ratio: 1.22 (1.01-1.46), P=0.04 CVD death 1.35 (1.04-1.76), P=0.02 20 Patients with Events (%) 15. Intensive therapy 10-5 Standard therapy 0 3 Years No. at Risk 1748 506 Intensive therapy 5128 4972 4803 3250 523

480

N Engl J Med 2008;358:2545

Intensive Therapy of Type 2 Diabetes

Minimal hypoglycemia Weight gain No excess CVD Effort Expense

UKPDS Kumamoto ACCORD ADVANCE VADT

Reduced development and progression of <u>microvascular</u> complications

Development of Medications Used in the Treatment of Type 2 Diabetes

Major Premises Selection of Interventions

- Effectiveness in lowering A1c

 Use more effective drugs if initial A1c higher
 Can use less effective medications if A1c < 8.5

 Safety
- Side-effects, tolerability/acceptance
- Other characteristics, effect (s) on
 - -Weight
 - -CVD risk factors
 - -Beta-cell preservation
- Cost

Relative Merits of Hypoglycemic Agents

Decrease in HbA1c: Potency of Monotherapy

Consensus algorithm-2009

Tier 1: Well-validated core therapies

First Step- Metformin + Lifestyle

- Recognizes failure of life-style alone
- Inhibits hepatic glucose output- predominantly lowers fasting glycemia
- Cellular mechanism unknown (AMP kinase)
- Lowers HbA1c by ≈1.5%
- Effective in obese and non-obese patients and in preventing diabetes in pre-diabetics (DPP)
- Glucophage off-patent, very inexpensive

Intensive Therapy of Type 2 Diabetes

Lifestyle: Diet and Exercise

- Highly effective in short term
- 5-10 lb weight loss usually sufficient to ameliorate hyperglycemia
- Long-term benefit parallels results of obesity therapy

Metformin

DeFronzo NEJM 1995;333:541

Adding to Lifestyle and Metformin

If HbA1c ≥ 7%

Add either sulfonylurea or Basal Insulin

Metformin + Sulfonylurea

DeFronzo NEJM 1995;333:541

Insulin Therapy

HbA1c

Insulin dose

153 Type 2 diabetic men Mean age 60

VA Cooperative Study Diabetes Care 1995;18:1113

Insulin Therapy of Type 2 DM Bedtime NPH

1995;18: 843

Results of Insulin Monotherapy Glycemia

Results of Insulin Monotherapy

Hypoglycemia

Results of Insulin Therapy with Metformin

Combination Therapy: Glycemia

Results of Insulin Therapy with Metformin

Severe Hypoglycemia

Results of Metformin Plus Other Therapy

Consensus algorithm: Initiation and adjustment of insulin

Diabetologia 2009; 52:17-30 Diabetes Care 2009;32:193-203

Choice of Insulin

4-T Study: 3 year results

Initial randomized therapy	HbA1c/% <7 (%)	Weight gain (kg)	Dose (Units/day)	% on two insulin types	Hypoglycemia Severe (%)
70/30	7.1/51	5.7	70	67	2.6
AC aspart	6.8/67*	6.4	86	74	2.1
Basal	6.9/64*	3.6*	88*	82 *	0.9*

 Similar median A1c results, although more patients on initial basal insulin achieved < 7% goal

Most patients need more than 1 type of insulin over 3 yr
Less weight gain and hypoglycemia with initial basal

Holman NEJM 2009;361:1736

Consensus algorithm-2009

Results of Metformin Plus Other Therapy

Intensive Therapy of Type 2 diabetes Thiazolidinediones

- Relatively weak as monotherapy
- More potent in combination with insulin, metformin, or sulfonylurea/glitinide
- Generally well tolerated- edema, CHF, bone loss
- Liver function monitoring no longer obligatory
- Rosiglitazone and pioglitazone available
- Pioglitazone has better lipid effects, ?bladder cancer
- Concern regarding CVD with rosi. meta-analysis
- No long-term, reliable data

New Drugs

GLP-Agonists:Exenatide

- Exenatide- 39 amino acid
- GLP homologue derived from venom of the Gila lizard "monster" (Heloderma suspectum)
- Similar to GLP 1, 7-37
 - -Stimulates insulin secretion
 - -Suppresses glucagon
 - -Delays gastric emptying
 - -May decrease appetite
 - -Gl side-effects

Results of Metformin Plus Other Therapy

©2005 David M. Nathan

New Drugs

Exenatide

30 week CCT in metformin failures (n=336) 19% loss to f/u. BMI- 34 kg/m² HbA1c- 8.2% Inactive placebo Injected <u>BID</u>

2.8 kg weight loss with largest dose

12-45% with N/V or diarrhea

DeFronzo et al. Diabetes Care 2005;28:1092

Exenatide (BID) vs Glargine (QD)

2 3ody Weight, kg Change in 0 -1 -2 * * -3 0 2 8 12 18 4 26 Weeks Exenatide group, n 281 277 275 261 245 235 231 Insulin glargine group, n 267 266 261 251 253 246 244 Open label Non-inferiority Designed by company • 551 subjects • 14% loss to followup • Duration ~ 9.5 y • Metformin + SU

• A1c 8.3%

Heine et al Ann Int Med 2005;143:559

©2010 David M. Nathan

Exenatide (BID) vs Glargine (QD)

Open label Non-inferiority Designed by company • 551 subjects • 14% loss to followup • Duration ~ 9.5 y • Metformin + SU • A1c 8.3%

> Heine et al Ann Int Med 2005;143:559

©2010 David M. Nathan

Liraglutide (daily) vs Exenatide (BID)

Open-label, non-inferiority Designed by Company

- 464 subjects
- 17% lost
- Duration ~8 yr
- 63% MET +SU
- 27% MET only
- 10% SU only
- A1c- 8.2%

No differences in Hypoglycemia Weight loss Gl side effects

> Buse et al Lancet 2009;374:39

©2010 David M. Nathan

Reasons Newer Medications Not Chosen

• Comparable or lower effectiveness in lowering glycemia than older drugs

 alpha-glucosidase inhibitors, amylin analogues, DPP 4 inhibitors

- Side-effects
 - $-\alpha GI GI$
 - -GLP analogues- GI
 - -Amylin-Gl
- Experience- limited for all
- Cost- higher than for generics

GLP and DPP4 Inhibitors

GLP and its Analogues

- Stimulate insulin secretion
- Suppress glucagon
- Slow motility
- Lower A1c by ~1.0%
- Injections twice per day
- Weight loss of ~ 5 lb
- Associated with nausea, vomiting, diarrhea in ~40%

DPP 4 Inhibitors

- Inhibit breakdown of endogenous GLP, raising levels by ~2-fold
- Decrease A1c by ~0.6%
- Oral medication
- No weight loss
- No GI side-effects
- Expensive

Expensive

Results of Metformin Plus Other Therapy

Second Step

lf you Use a New Drug				
<u>Class</u>	<u>Advantage</u>	<u>Disadvantage</u>	When to Use	
DPP-4	Well-tolerated Probably safe One dose	Weak Expensive	Mild DM	
GLP-1	Weight loss No hypos	GI side effects Limited efficacy Injections Expensive	Moderate DM Weight gain o risk of hypos major issue	
TZDs	No hypos	Edema, CHF, CVD risk, Expensive	Never?	

Relative Merits of Hypoglycemic Agents

Decrease in HbA1c: Potency of Monotherapy vs Cost

Medical management of hyperglycaemia in type 2 diabetes mellitus: a consensus algorithm for the initiation and adjustment of therapy

A consensus statement from the American Diabetes Association and the European Association for the Study of Diabetes

D. M. Nathan · J. B. Buse · M. B. Davidson · E. Ferrannini · R. R. Holman · R. Sherwin · B. Zinman Diabetologia 2009; 52:17-30 Diabetes Care 2009;32:193-203

EASD=European Association for the Study of Diabetes. Adapted from Nathan et al.1

Caveats

- Although the algorithm should apply to most people with type 2 diabetes, it does not apply to all
- Individualize therapy
- May select different glycemic goals
 - Elderly
 - Persons with projected life-span too short to benefit
 - Persons where risk for side-effects outweighs benefits
- May select different medications based on
 - Patient acceptance, tolerance
 - Specific risk factors
- Don't forget other interventions- lipids, blood pressure, CVD prevention