

Best Approaches in the Evaluation of Patients with Coronary Artery Disease

James Sawalla Guseh, M.D.

Program Director, Sports Cardiology Fellowship Cardiovascular Performance Program Massachusetts General Hospital jguseh@mgh.harvard.edu

Cardiovascular Performance Program

Disclosures

No commercial or financial disclosures.

Diagnostics of Stable CAD

J. Sawalla Guseh, M.D.

Therapeutic Approach to CAD

David M. Dudzinski, M.D., J.D.

Approach to ACS

Marc S. Sabatine, M.D., M.P.H.

By the Numbers

- 15.6 million patients with CAD
- 1.4 million discharges a year for CAD
- 2.3 million clinic visits for angina
- 8.2 million patients with angina

• Death/MI: 3 - 4% per year in stable CAD on therapy

Mazaffarian 2016, Eisen 2016, Boden 2007, Frye 2009, De Bruyne 2012, Maron 2020.

Audience Question #1

Most stable angina presentations describe chest discomfort of approximately what <u>duration</u>?

- a. 30 seconds
- b. 3 minutes
- c. 30 minutes
- d. 3 hours

Answer (B): 3 minutes

Most stable angina presentations last **3-5 minutes** and are usually less than 10 minutes in duration.

Chapter 1:

Chapter 2:

Assess Syndrome Stability

Estimate CAD probability

Chapter 3:

Confirm Disease and Mortality Risk

Exclude ACS

(low risk \rightarrow non-CAD approach)

Select a diagnostic test

Chapter 1:

Is this Stable Angina and what is the syndrome severity?

Strategy: To entrain CAD into your differential diagnosis and exclude an acute coronary syndrome

Stable Ischemic Heart Disease (Stable CAD; Chronic Coronary Syndrome; Stable Angina)

Chronic
Coronary
Syndrome /
Stable AnginaAngina is stable when the symptom pattern is
predictable and unchanged over the course of several
weeks. Fluctuation is permitted with emotional stress
and changes in ambient temperature. This reflects
quiescent progressive coronary plaque.

Stable Ischemic Heart Disease (Stable CAD; Chronic Coronary Syndrome; Stable Angina)

Chronic Coronary Syndrome / Stable Angina	Angina is <u>stable</u> when the symptom pattern is predictable and unchanged over the course of several weeks. Fluctuation is permitted with emotional stress and changes in ambient temperature. This reflects quiescent progressive coronary plaque .
Acute Coronary Syndrome/ Unstable Angina	Angina is <u>unstable</u> when the symptom pattern abruptly worsens (frequency or duration) without a cause of increased myocardial oxygen consumption. This reflects plaque rupture, erosion, and thrombosis.

Assess for Symptoms and Stability

Discomfort Duration is useful

	Constant vs Intermittent?
T Timing	Abrupt or Gradual? Has it happened before and in what setting?
	Increasing frequency? Duration? Frequency?

- 1. Ischemic pain typically lasts 3-5 minutes (usually less than 10 minutes).
- 2. It doesn't usually last longer than **30 minutes** without causing myocardial infarction.
- 3. Pain that lasts less than 1 minute is unlikely to be coronary in origin.

Grade Severity

Angina pectoris is often mild, especially at its onset. It does not need to be severe; it may be merely a sensation of slight pressure on some effort that would not normally bring it on. The amount of exercise is more important than the amount of pain. The presence of even mild substernal discomfort on effort is more important than the severity of the pain. The severity of the discomfort or pain is largely dependent on the sensi-

Paul Dudley White's 1942 Lecture in Manchester New Hampshire

Canadian Cardiovascular Society Classification

CCS Class	Definition	Comment
I	Angina with strenuous exertion	No angina walking, stairs
II	Angina with moderate exertion	Pain when walking quickly, after a meal, in the cold. Can walk 2 blocks and climb a flight of stairs without angina.
Ш	Angina with mild exertion	Angina when climbing 1 flight of stairs or walking 1-2 blocks.
IV	Rest Angina	Severe limitation. Rest angina or minimal activity.

Exclude Unstable Syndromes

Three Principal Presentations of Unstable Angina				
Rest Angina	Angina Occurring at Rest and usually prolonged > 20 minutes, occurring within 1 week of presentation			
New Onset Angina	Angina of at least CCS Class III severity with onset within 2 months of initial presentation			
Increasing Angina	Previously diagnosed angina that is distinctly <u>more frequent,</u> <u>longer in duration or lower in threshold</u> . Increasing by 1 or more CCS class within 2 months of initial presentation to at least CCS Class III severity.			

E. Braunwald. Unstable angina: A classification. Circulation, 80 (1989).

moking (tobacco, cocaine)HypertensionDiabetesValvular Heart DiseaseDyslipidemiaTachyarrhythmias (e.g. nocturnal angina attributed to nightmares)HypertensionAnemia
DiabetesValvular Heart DiseaseDyslipidemiaTachyarrhythmias (e.g. nocturnal angina attributed to nightmares)HypertensionAnemia
DyslipidemiaTachyarrhythmias (e.g. nocturnal angina attributed to nightmares)HypertensionAnemia
Hypertension Anemia
Premature Family History

Who's the Host (Risk Factors)	Exacerbating Features	Biochemical Evaluation
Smoking (tobacco, cocaine)	Hypertension	CBC
Diabetes	Valvular Heart Disease	Creatinine
Dyslipidemia	Tachyarrhythmias (e.g. nocturnal angina attributed to nightmares)	Lipid Profile
Hypertension	Anemia	TSH
Premature Family History		HbA1c

*NT-proBNP and high sensitivity troponin

□ History: Pressure, Squeezing, Heavy or Tight?

□ Seconds, minutes, or hours?

□ Happening at rest, new, crescendo?

Chapter 1: Consider Syndrome Stability. Exclude ACS.

LOW

Chapter 2:

What is the pre-test likelihood of obstructive CAD?

Strategy: Identify the patient with a low pretest probability of obstructive coronary artery disease by history and epidemiology

Audience Question #2

What is average LDL cholesterol (mg/dL) in America and median age of first myocardial infarction in men?

- a. 130, Age 55
- b. 100, Age 60
- c. 130, Age 65
- d. 160, Age 70

What is average LDL cholesterol (mg/dL) in America and median age of first myocardial infarction in men?

Answer (C): 130, Age 65

The average LDL-C in the US ~ 130 mg/dL The median age of first MI in men is at age 65. The median age of first MI in women is age 72.

Historical: Typical or Atypical Classification

Three "Classical" Narrative Features of Angina

Substernal chest discomfort (with a characteristic quality and duration)

Provoked by **exertion** or emotional **stress**

Relieved by **rest** or *nitroglycerin**

Historical: Classify Chest Pain

Features	Classification	
0 - 1	Nonanginal chest pain	Noncardiac
2	Atypical angina	Probable
3	Typical angina	Definite

The typical/atypical and nonanginal paradigm has been used repeatedly to estimate the likelihood of CAD in symptomatic patients.

THE NEW ENGLAND JOURNAL OF MEDICINE

June 14, 1979

ANALYSIS OF PROBABILITY AS AN AID IN THE CLINICAL DIAGNOSIS OF CORONARY-ARTERY DISEASE

GEORGE A. DIAMOND, M.D., AND JAMES S. FORRESTER, M.D.

Abstract The diagnosis of coronary-artery disease has become increasingly complex. Many different results, obtained from tests with substantial imperfections, must be integrated into a diagnostic conclusion about the probability of disease in a given patient.

To approach this problem in a practical manner, we reviewed the literature to estimate the pretest likelihood of disease (defined by age, sex and symptoms) and the sensitivity and specificity of four diagnostic tests: stress electrocardiography, cardiokymography, thallium scintigraphy and cardiac fluoroscopy. With this information, test results can be analyzed by use of Bayes' theorem of conditional probability.

This approach has several advantages. It pools the diagnostic experience of many physicians and integrates fundamental pretest clinical descriptors with many varying test results to summarize reproducibly and meaningfully the probability of angiographic coronary-artery disease. This approach also aids, but does not replace, the physician's judgment and may assist in decisions on cost effectiveness of tests. (N Engl J Med 300:1350-1358, 1979)

Table 1. Prevalence of Angiographic Coronary-Artery Disease in Symptomatic Patients.

SYMPTOM	PROPORTION OF	POOLED MEAN
	PATIENTS	± SEP*
	AFFECTED	(%)
Nonanginal chest pain	146/913	16.0±1.2
Atypical angina	963/1931	49.9±1.1
Typical angina	1874/2108	88.9±0.7

*Standard error of the per cent (see the Appendix). These values establish statistical levels of error but do not include errors due to sampling bias & other factors, which are probably of greater magnitude.

Age, sex, and symptom triangulates pretest likelihood of CAD

Table 3. Pretest Likelihood of Coronary-Artery Disease in Symptomatic Patients According to Age and Sex.*

Age	Nonanginal Chest Pain		Nonanginal Atypical Chest Pain Angina		TYPICAL Angina		
YR	MEN	WOMEN	MEN	WOMEN	MEN	WOMEN	
30-39	5.2±0.8	0.8±0.3	21.8 ± 2.4	4.2±1.3	69.7±3.2	25.8±6.6	
40-49	14.1 ± 1.3	2.8 ± 0.7	46.1 ± 1.8	13.3 ± 2.9	87.3±1.0	55.2 ± 6.5	
50-59	21.5 ± 1.7	8.4 ± 1.2	58.9±1.5	32.4 ± 3.0	92.0±0.6	79.4±2.4	
60-69	28.1 ± 1.9	18.6±1.9	67.1±1.3	54.4 ± 2.4	94.3±0.4	90.6±1.0	

37% (3X)

*Each value represents the per cent ±1 standard error of the per cent, calculated from the data in Tables 1 & 2 as described in the Appendix.

12% (1X)

Increasing Likelihood

Diamond and Forester. NEJM. 1979

74% (6X)

CAD Risk Factors amplify baseline risk

	Pretest likelihood of CAD (%)							
	Nonanginal (\leq 1 sx)		Nonanginal (\leq 1 sx) Atypical Anginal (2)		Typical Angina (all 3 sx)			
Age	Men	Women	Men	Women	Men	Women		
35	$3 \rightarrow 35$	1 → 19	8 → 59	2 → 39	30 → 88	10 → 78		
45	6 → 47	2 → 22	21 → 70	5 → 43	51 → 92	29 → 79		
55	23 → 59	4 → 21	45 → 79	10 → 47	80 → 95	38 → 82		
65	49 → 69	9 → 29	71 → 86	20 → 51	93 → 97	56 → 84		

Within each cell a \rightarrow b represents likelihood without risk factors (a) and with all risk factors (b) with include diabetes, smoking, and hypercholesterolemia. Note that there are varying thresholds for intermediate risk (e.g. 10 - 90%, or 20 - 80%).

Pryor et al. Ann Intern Med. 1993.

Pretest likelihood in symptomatic patients (with shortness of breath stratified)

Table 5Pre-test probabilities of obstructive coronary artery disease in 15 815 symptomatic patients according to age,sex, and the nature of symptoms in a pooled analysis⁶⁴ of contemporary data^{7,8,62}

	Тур	ical	Atyp	oical	Non-a	nginal	Dysp	noeaª
Age	Men	Women	Men	Women	Men	Women	Men	Womer
30-39	3%	5%	4%	3%	١%	١%	0%	3%
40-49	22%	10%	10%	6%	3%	2%	12%	3%
50-59	32%	13%	17%	6%	11%	3%	20%	9%
60–69	44%	16%	26%	11%	22%	6%	27%	14%
70+	52%	27%	34%	19%	24%	10%	32%	12%

CAD = coronary artery disease; PTP = pre-test probability.

^aIn addition to the classic Diamond and Forrester classes,⁵⁹ patients with dyspnoea only or dyspnoea as the primary symptom are included. The regions shaded dark green denote the groups in which non-invasive testing is most beneficial (PTP >15%). The regions shaded light green denote the groups with PTPs of CAD between 5–15%, in which testing for diagnosis may be considered after assessing the overall clinical likelihood based on the modifiers of PTPs presented in *Figure* 3.

Knuuti and others, 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes

Low Likelihood Groups Correspond to Premature CAD cutoffs

Age No Ci		Nonanginal Atype Chust Pain Angi		VICAL GINA	TYPICAL Angina	
YS	NEN	WOMEN	MEN	WOMEN	MEN	WOMEN
30-39	5.2±0.8	0.8±0.3	21.8±2.4	4.2±1.3	69.7±3.2	25.8±6.6
40-49	14.1±1.3	2.8 ± 0.7	46.1±1.8	13.3±2.9	87.3±1.0	55.2±6.5
50-59	21.5±1.7	8.4±1.2	58.9 ± 1.5	32.4±3.0	92.0±0.6	79.4±2.4

Take Home: Look for non-anginal (or non-cardiac) histories in men< 55 and women < 60.</td>

	Ту	pical	Aty	pical	Non-a	on-anginal		Dyspnoea	
Age	Men	Women	Men	Women	Men	Women	Men	Women	
30-39	3%	5%	4%	3%	1%	1%	0%	3%	
40-49	22%	10%	10%	6%	3%	2%	12%	3%	
50-59	32%	13%	17%	6%	11%	3%	20%	9%	
60-69	44%	16%	26%	11%	22%	6%	27%	14%	
70+	52%	27%	34%	19%	24%	10%	32%	12%	

Avoid using and dismissing "atypical chest pain"

1	C-LD	2. Chest pain should not be described as atypical, because it is not helpful in determining the cause and can be misinterpreted as benign in nature. Instead, chest pain should be described as cardiac, possibly cardiac, or noncardiac because these terms are more specific to the potential underlying diagnosis.
---	------	--

The examination is rarely rewarding

- Pedal Edema
- Jugular Venous Distension
- S3 gallop, a new murmur
- Orthopnea
- Hypertension
- Corneal Arcus
- Xanthelasma
- Vascular Bruits
- Other Stigmata of CAD

BMJ 2018;360:j5884, Griffing. N Engl J Med 2014; 370:e15

Resting Electrocardiogram (ECG)

- Examine carefully for Infarction (Q-waves)
- Remember Poor R-wave Progression can be a Q-wave equivalent
- Look for territorial fractured QRS complexes
- Look for abundant PVCs
- Note the presence or absence of LVH and ST repolarization abnormalities

If your ECG (or exam) is abnormal consider an echocardiogram

Evidence of Infarction Abundant PVCs or complex arrhythmias Clinical HF New murmur

Rest Transthoracic Echocardiogram

If your ECG is abnormal consider an echocardiogram

Rest Transthoracic Echocardiogram

2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes

After a history, physical, and ECG you should come away with a sense of whether the patient is **low likelihood** of CAD.

	Older with RFs		Younger without RFs	
		High Likelihood of CAD	Low Likelihood of CAD	
Good story	Cardiac or Possibly Cardiac	High	Intermediate low	
Poor story	Non-Cardiac	Intermediate high	Low	

*Typical and Atypical angina are now cardiac and possibly cardiac chest pain.

The value of estimating the upfront probability of CAD is to identify those with a low probability of SIHD who benefit from an eval focusing on non-CAD causes of chest pain.

Nonischemic Cardiovascular

- Aortic Dissection
- Pericarditis

Pulmonary

- Embolus
- Pneumothorax
- Pneumonia
- Pleuritis

Gastrointestinal

- Esophagitis, Esophageal Spasm, Reflux
- Biliary Colic, Colecystitis, Choledocolithiasis, Cholangitis
- Peptic Ulcer, Pancreatitis

Hematological: Sickle Cell, Polycythemia Vera

Chest Wall Constochondrosis Fibrositis Rib Fracture Sternoclavicular arthritis Herpes Zoster (before rash)

PsychiatricAnxiety disordersHyperventilationPanic DisorderPrimary anxietyAffective disordersSomatoform Disorders (e.g. depression)Thought Disorders (e.g. fixed delusions)

Quick Examples

- **Case 1:** 40M with chest discomfort after eating but not worse with exertion not better with rest. Nonanginal chest pain.
- Case 2: 40M with chest discomfort after eating and worse when he takes a walk but not clearly better with rest. Possible Cardiac Chest pain.
- Case 3: 40M with chest discomfort after eating, worse when he does hills, better if he stops. High probability cardiac chest pain.

□ Story: Noncardiac, possibly/probably cardiac?

Epidemiology. < Men 55. < Women 60.

□ Abnormal Exam? Abnormal ECG?

Chapter 2: Likelihood of CAD. Identify the low risk.

