Hyperlipidemia: Latest Concepts

Pradeep Natarajan, MD MMSc Director of Preventive Cardiology, MGH Paul & Phyllis Fireman Endowed Chair in Vascular Medicine, MGH Associate Professor of Medicine, HMS Associate Member, Broad Institute @pnatarajanmd

June 10, 2022 HMS CME Course Internal Medicine: Comprehensive Review and Update Boston, MA

Corrigan Minehan Heart Center

- Grants, investigator-initiated: Amgen, Apple, AstraZeneca, Boston Scientific, Novartis
- Consultant: Apple, AstraZeneca, Blackstone Life Sciences, Foresite Labs, Roche / Genentech, Novartis
- Scientific Advisory Board: TenSixteen Bio, geneXwell
- Co-Founder: TenSixteen Bio
- Spousal employment: Vertex

Learning Objectives

• Recognize that LDL-C-lowering represents a key strategy in primary and secondary prevention of atherosclerotic cardiovascular disease.

 Identify available and emerging therapies for lipid modulation and improving atherosclerotic cardiovascular disease risk.

• Understand the role of novel lipid-related biomarkers in atherosclerotic cardiovascular disease risk stratification.

- Solid evidence
 - LDL cholesterol
- <u>Unsupportive evidence</u>
 HDL cholesterol
- Emerging, promising evidence
 - Triglycerides
 - Lipoprotein(a)
 - Apolipoprotein B

Lipoproteins allow transport of waterinsoluble lipids (cholesterol, triglycerides)

LDL CHOLESTEROL

Statin-mediated LDL-C-lowering translates into CVD risk reduction

Collins R et al. Lancet 2016

GENERAL HOSPITAL Corrigan Minehan

HEART CENTER

MASSACHUSETTS GENERAL HOSPITAL CORRIGAN MINEHAN HEART CENTER

Physiologic TC is 70-140 mg/dl (and LDL-C is 35-70 mg/dl)

O'Keefe JH et al. JACC 2004

Measurement

- Screen adults ≥ 20 years (fasting or nonfasting)
 - If triglycerides > 400 mg/dl, check fasting

- If LDL-C < 70 mg/dl, consider alternate estimations of LDL-C
 - Martin-Hopkins (JAMA 2013)
 - Sampson-NHLBI (JAMA Cardiology 2020)
 - Excel file to calculate:

https://nih.figshare.com/ndownloader/files/22694 093

LDL-C = $\frac{TC}{0.948} - \frac{HDL-C}{0.971} - \left(\frac{TG}{8.56} + \frac{TG \times Non-HDL-C}{2140}\right)$

Sampson M et al. JAMA Cardiology 2020

PREDIMED

MARSACHUSETTS GENERAL HOSPITAL CORRIGAN MINEHAN HEART CENTER

A Primary End Point (acute myocardial infarction, stroke, or death from cardiovascular causes)

Med diet, EVOO: hazard ratio, 0.69 (95% CI, 0.53-0.91) Med diet, nuts: hazard ratio, 0.72 (95% CI, 0.54-0.95)

No. at Risk						
Control diet	2450	2268	2020	1583	1268	946
Med diet, EVOO	2543	2486	2320	1987	1687	1310
Med diet, nuts	2454	2343	2093	1657	1389	1031

Estruch R et al. *NEJM* 2018

- Recommendations: <10% of total calories
- Relationship to CVD is complicated, particularly if restriction is at the expense of increased refined carbohydrates (Astrup A et al JACC 2020)

 If cholesterol is elevated, identify sources of saturated fat and replace with polyunsaturated fats

Dietary priorities to improve lipids and overall CV health

Healthy diet characteristics							
\uparrow plant-based, \downarrow animal-based	>200g/d (>2-3 servings/d) vegetables						
Sat FA <10% total energy	<350-500g/w red meat, minimize processed meat						
Minimize Trans FA	1-2 servings/w fish, particularly fatty fish						
<5g/d Na	30g/d						
30-45g/d fiber	<100g/w alcohol						
>200g/d (>2-3 servings/d) fruits	Discourage sugar-sweetened beverages						

Visseren FLJ et al. Eur Heart J. 2021

LDL-C Treatment Targets Primary Prevention

	ACC/AHA	ESC
Severe hypercholesterolemia (LDL-C > 190 mg/dl)	>50% lower AND <100 mg/dl	>50% lower AND <70 mg/dl
Diabetes mellitus	30-49% lower (>50% lower)	>50% lower AND <100 mg/dl (>50% lower AND <70 mg/dl)
High risk (non-diabetic, LDL-C < 190 mg/dl)	>50% lower	<55 mg/dl
Borderline/Intermediate 10-year ASCVD risk (non-diabetic, LDL-C < 190 mg/dl)	30-49% lower	<70 mg/dl

2021 ESC: Adjustment of primary prevention risk categories by age

"Risk-enhancing factors" to evaluate statin suitability

 Evaluate among those at intermediate (7.5-20%) risk

 Consider among those at borderline (5-7.5%) risk Family h/o premature ASCVD

LDL-C 160-189 or non-HDL-C 190-219 mg/dL

Metabolic syndrome

CKD (eGFR 15-59)

Chronic inflammatory conditions

h/o premature menopause, h/o preeclampsia

South Asian ancestry

Triglycerides \geq 175 mg/dL, non-fasting

If measured: $hsCRP \ge 2.0$ $Lp(a) \ge 50$ $ApoB \ge 130$ ABI < 0.9

Consider CAC if statin Rx equipoise persist for primary prevention

 Consider if statin Rx equipoise for intermediate (7.5-20%) risk and selected borderline (5-7.5%) risk

Low yield in low risk or <40 years

CAC strongly predicts future CAD events

Detrano R et al. NEJM. 2008

Blaha M et al. Circulation. 2016

If CAC scoring performed and 0 for borderline/ intermediate risk, consider deferring statin

lla	B-NR	 7. In intermediate-risk adults or selected borderline-risk adults in whom a CAC score is measured for the purpose of making a treatment decision, AND If the coronary calcium score is zero, it is reasonable to withhold statin therapy and reassess in 5 to 10 years, as long as higher risk conditions are absent (diabetes mellitus, family history of premature CHD, cigarette smoking); If CAC score is 1 to 99, it is reasonable to initiate statin therapy for patients ≥55 years of age;
		 If CAC score is 100 or higher or in the 75th percentile or higher, it is reasonable to initiate statin therapy (S4.4.2-17, S4.4.2-23).

Is CAC>0 primary or secondary prevention?

- In the primary prevention algorithm, and classification is not covered in major guidelines
- Many payers <u>do</u> recognize as secondary prevention

• My impression: any CAC in <70yo (particularly in <50yo) merits pharmacologic LDL-C-reduction (Khetarpal S, et al. *JAMA Cardio*. 2021)

LDL-C Treatment Targets Secondary Prevention

	АСС/АНА	ESC
ASCVD AND not very high risk	>50% lower	<55 mg/dl
ASCVD AND very high risk	>50% lower AND <70 mg/dl	<55 mg/dl
ASCVD AND recurrent event within 2y on max tolerated statin		<40 mg/dl

Symptom/Condition	Fold risk compared to placebo	Citations
Medication discontinuation	Null	Kashani A, et al. <i>Circulation</i> . 2006; Riaz H, et al. <i>Am J</i> <i>Cardiol</i> . 2017
Myalgias	Null	Gupta A, et al. <i>Lancet</i> . 2017
ALT/AST elevation	4.2	Kashani A, et al. <i>Circulation</i> . 2006; Bjornsson E, et al. J Hepatol. 2012
Diabetes mellitus	1.1	Swerdlow DI, et al. <i>Lancet</i> . 2015

Minimizing statin-associated side effects

- To minimize risks of:
 - Muscle symptoms: Avoid drug interactions, check/address TSH first
 - Liver toxicity: Avoid drug interactions, consider checking LFTs at baseline
 - Diabetes mellitus: Minimize prescriptions in low CVD risk groups

Ezetimibe (Zetia)

MGH GENERAL HOSPITAL CORRIGAN MINEHAN HEART CENTER

Cannon CP et al. NEJM. 2015

PCSK9 monoclonal antibodies

FOURIER Evolocumab (Repatha)

Sabatine MS et al. NEJM. 2017

ODYSSEY OUTCOMES

Alirocumab (Praluent)

Schwartz G et al. NEJM. 2018

Bempedoic acid (Nexletol): ACL inhibitor

A Mean LDL-C levels over time

Goldberg A et al. JAMA 2019

MASSACHUSETTS GENERAL HOSPITAL CORRIGAN MINEHAN

HEART CENTER

+1-2% risk of gout with bempedoic acid

- CLEAR Wisdom (Goldberg A et al JAMA 2019):
 - Of N=11 experiencing gout
 - 5 had a prior history of gout
 - 10 had hyperuricemia before starting the medication

- Key Messages:
 - Avoid bempedoic acid among patients with a prior history of gout
 - If no history of gout, check uric acid avoid bempedoic acid if uric acid is elevated
 - Note: combo pill with ezetimibe has same co-pay as without

eart Center

Inclisiran: PCSK9 sq siRNA q6mo

Ray KK et al. *NEJM* 2020

Evinacumab (Evkeeza): ANGPTL3 iv q4w for HoFH

Raal FJet al. NEJM 2020

MASSACHUSETTS GENERAL HOSPITAL

HEART CENTER

CORRIGAN MINEHAN

MĜI

LDL-C Key Points

- Statins for clinical ASCVD, diabetes mellitus, severe hypercholesterolemia, high/intermediate/borderline ASCVD risk
- Consider more aggressive LDL-C targets for eligible patients with: ezetimibe, bempedoic acid, PCKS9 mAbs, inclisiran

HDL CHOLESTEROL

HDL-C concentration is inversely correlated with ASCVD risk

Coronary heart disease

Emerging Risk Factors Collaboration. JAMA. 2009

In contemporary RCTs (high statin Rx prevalence), no benefit of HDL-C-raising medicines

Trial	HDL-C Effect	LDL-C Effect	CVD Effect
Niacin		-	
HPS2-THRIVE	+6 mg/dl	-10 mg/dl	Null
AIM HIGH	+9 mg/dl	-9 mg/dl	Null
CETP Inhibitors			
ILLUMINATE (torcetrapib)	+34 mg/dl	-22 mg/dl	Detrimental
dal-OUTCOMES (dalcetrapib)	+10 mg/dl	0 mg/dl	Null
REVEAL (anacetrapib)	+43 mg/dl	-26 mg/dl	Protective
ACCELERATE (evacetrapib)	+59 mg/dl	-27 mg/dl	Null

HDL-C Key Points

HDL-C is still a very good CVD risk predictor

• Avoid using the term "good cholesterol" since it implies causality

 Other factors correlated with increased HDL-C may explain the relationship with CVD – lack of diabetes mellitus, lack of obesity, healthful diet, lower triglyceride-rich lipoproteins

TRIGLYCERIDES

Preferred: "Triglyceride-rich lipoproteins"

Nordestgaard B et al. Lancet. 2015

Icosapent ethyl 2g bid

REDUCE-IT

A Primary End Point	t							Icosapent Ethyl	Placebo			
100	⁰ 7 ³⁰) Haza	ard ratio. C).75 (95%)	CI, 0.68–0	.83) -1	End Point	(N=4089)	(N=4090)	Hazard Ratio (95% CI)		P Value
90	0-	P<0.	001	,				no. of patients w	vith event (%)			
<u>,</u> 80	0- 20) -		1	lacebo		Primary composite	705 (17.2)	901 (22.0)	-8-	0.75 (0.68-0.83)	<0.001
∞ ± 70	0-						Key secondary composite	459 (11.2)	606 (14.8)		0.74 (0.65-0.83)	< 0.001
60 L	0- 10)-		and a start	lco	osapent ethyl	Cardiovascular death or nonfatal myocardial infarction	392 (9.6)	507 (12.4)		0.75 (0.66–0.86)	<0.001
ہ 50	0-		and it is the				Fatal or nonfatal myocardial infarction	250 (6.1)	355 (8.7)		0.69 (0.58-0.81)	<0.001
tix 40	0- 0) seesses (Urgent or emergency revascularization	216 (5.3)	321 (7.8)		0.65 (0.55-0.78)	< 0.001
ents		0	i	2 3	4	5	Cardiovascular death	174 (4.3)	213 (5.2)		0.80 (0.66-0.98)	0.03
Patio							Hospitalization for unstable angina	108 (2.6)	157 (3.8)		0.68 (0.53-0.87)	0.002
- 20	0-						Fatal or nonfatal stroke	98 (2.4)	134 (3.3)		0.72 (0.55-0.93)	0.01
10	0-		********				Death from any cause, nonfatal myocardial infarction, or nonfatal stroke	549 (13.4)	690 (16.9)		0.77 (0.69–0.86)	<0.001
	0	1	2	3	4	5	Death from any cause	274 (6.7)	310 (7.6)		0.87 (0.74–1.02)	—
		Y	ears since	e Random	ization				0	4 0.6 0.8 1.0 1.2	1.4	
No. at Risk												
Placebo 4 Icosapent ethyl 4	4090 4089	3743 3787	3327 3431	2807 2951	2347 2503	1358 1430				Better Better		

- ASCVD, or DM + risk factors
- LDL-C 40-100 mg/dl AND TG 135-499 mg/dl

Bhatt DL et al. NEJM. 2019

PROMINENT phase 3 study terminated

- Pemafibrate: selective PPAR-alpha modulator
- CV outcomes trial among high-risk patients with type 2 diabetes, mildmoderate hypertriglyceridemia, and low HDL-C on statins
- Terminated 4/2022 after interim analysis indicated endpoint was unlikely to be met

EART CENTER

- All other omega-3 fatty acid CV trials are null
- Non-inert mineral oil placebo in REDUCE-IT?
- STRENGTH (Nicholls SJ et al JAMA 2020) testing EPA/DHA 4g/d vs corn oil was null

Triglycerides Key Points

 For triglycerides > 500 mg/dl, triglycerides should be lowered with diet +/- medicines to reduce the risk of pancreatitis

 For triglycerides > 135 mg/dl + ASCVD or DM, icosapent ethyl may be considered for CVD risk reduction

 REDUCE-IT is not a pure test of the triglyceride hypothesis and several questions still remain

LIPOPROTEIN(a)

LDL-like particle elevated in 1 in 5

Elevated Lp(a) associated with 1.3-1.5fold CVD risk

Emerging Risk Factors Collaboration. JAMA. 2009

Lp(a) is largely stable in adulthood

Trinder M et al. JACC. 2022

Corrigan Minehan Heart Center

Lp(a)-lowering medicines are in clinical development

Tsimikas S et al. N Eng J Med. 2020

Who should have lipoprotein(a) assessed?

- Highest yield:
 - family history of premature ASCVD
 - personal history of premature ASCVD
 - recurrent ASCVD events despite guidelines appropriate therapy
 - Non-HDL-C > 190 mg/dl

- ESC/EAS: one-time measurement for all adults
- ACC/AHA: consider in borderline/intermediate risk primary prevention

PCSK9 mAbs are particularly beneficial among patients with high Lp(a)

O'Donoghue M et al. Circulation. 2019

Szarek M et al. *Eur Heart J*. 2020

- Pay attention to units and reference ranges
- 2018 ACC/AHA Cholesterol guidelines: use as a risk-enhancing factor to support statin Rx
- Niacin and PCSK9 mAbs reduce Lp(a) but are not FDA-approved for this indication
 - Niacin is poorly tolerated and generally not recommended
 - If consider PCSK9i, definitely go for it if high Lp(a)
- Ongoing CV outcomes RCTs are evaluating the CVD risk reducing efficacy of apo(a) antisense oligonucleotides

APOLIPOPROTEIN B

ApoB is a common feature of atherogenic lipoproteins

ApoB, LDL-C, and non-HDL-C predict CVD risk similarly

	Adjusted HR per 1 SD Increase	P Value
АроВ	1.23 (1.20–1.26)	<0.001
Direct LDL-C,	1.20 (1.17–1.23)	<0.001
Friedewald LDL-C	1.17 (1.14–1.20)	<0.001
Martin/Hopkins LDL-C	1.19 (1.16–1.22)	<0.001
Non–HDL-C	1.21 (1.18–1.24)	<0.001
HDL-C	0.81 (0.79–0.84)	<0.001
ApoA1	0.81 (0.78–0.83)	<0.001

Expectation: LDL-C/ApoB = 1.1

Welsh C, et al. *Circulation*. 2019

 2018 ACC/AHA: Use apoB > 130 mg/dl as a 'risk-enhancing factor' among those with borderline/intermediate risk

 2019 ESC/EAS: ApoB is recommended for risk assessment among those with hypertriglyceridemia, diabetes mellitus, obesity, metabolic syndrome, or very low LDL-C levels.

ApoB analysis is recommended for risk assessment, particularly in people with high TG levels, DM, obesity, metabolic syndrome, or very low LDL-C levels. It can be used as an alternative to LDL-C, if available, as the primary measurement for screening, diagnosis, and management, and may be preferred over non-HDL-C in people with high TG levels, DM, obesity, or very low LDL-C levels.

Key Points re: Apolipoprotein B

LDL-C and non-HDL-C are generally sufficient

In 2018 ACC/AHA Cholesterol guidelines, apoB is a risk-enhancing factor

 May have a role in higher risk patients to verify suitable lowering of atherogenic lipoproteins (apoB target would be similar as LDL-C target)

Take-Home Points

- Virtually no modern human has an optimal LDL-C
- Dietary modification should be included in any approach addressing CVD risk
- Reducing the concentration of cholesterol in atherogenic lipoproteins is the hallmark of primary and secondary prevention
- Among individuals with elevated triglycerides and ASCVD or DM, consider icosapent ethyl
- Elevated Lp(a) may support aggressive LDL-C-lowering (particularly with PCSK9i) and ongoing RCTs are evaluating Lp(a)-lowering strategies
- ApoB has a limited role in addition to conventional lipids but may be useful in select patients