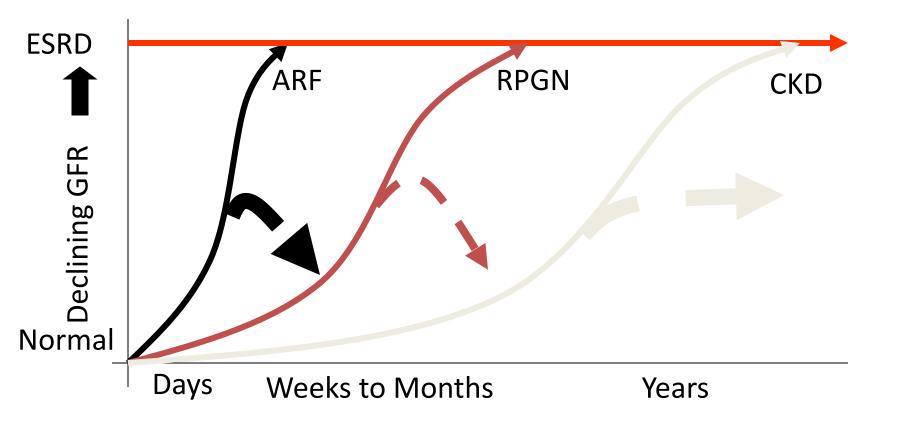
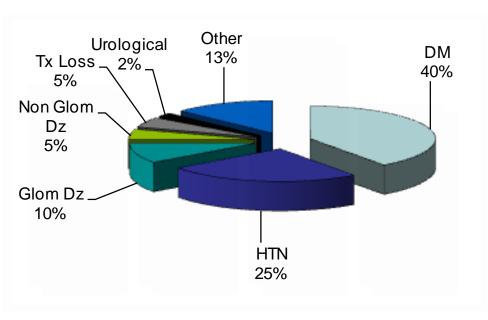

Kidney Disease -Presentation to Primary Care Internal Medicine 2015

David Steele MD Renal Unit Massachusetts General Hospital Boston MA

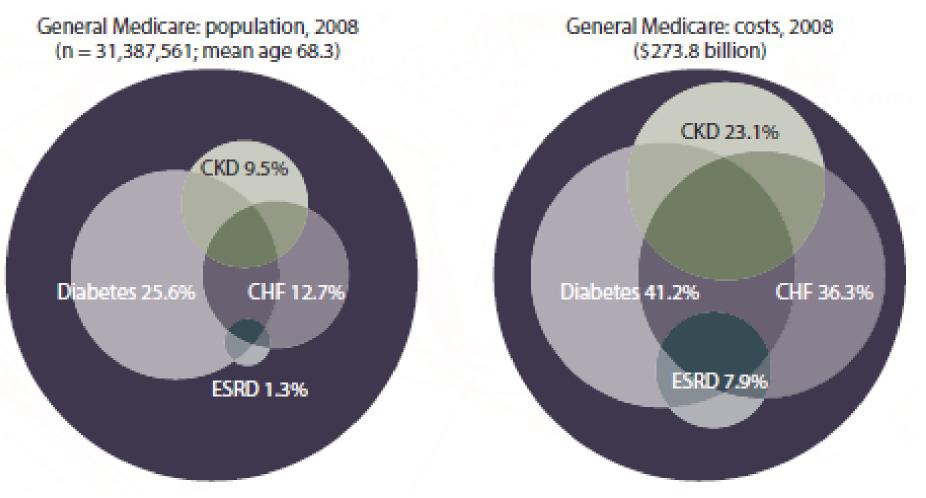

I have no conflicts of interest to declare

Nephrology Factoids



- Kidneys get ~ 20% of cardiac output
- Generate ultrafiltrate of 180L a day
- Produce 1-1.5L urine output
- Excrete ~ 600-800 mosm
- Regulates
 - Volume (Na Metabolism)
 - Tonicity (Water Metabolism)
 - Potassium metabolism
 - Acid/Base balance
 - Excretion of Nitrogenous wastes
 - Anemia (Erythropoetin)
 - Bone metabolism (1 alpha Hydroxylase)
 - Blood pressure (Renin)

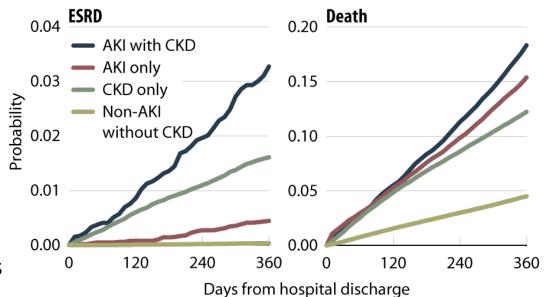
Natural History of Renal Failure



Chronic Kidney Disease: Defining (CKD)

- Kidney damage of > 3 months
- GFR < 60ml/min/1.73m2
- CKD results from many pathophysiologically distinct diseases which share a common natural history
- CKD should be staged using eGFR (eg MDRD)

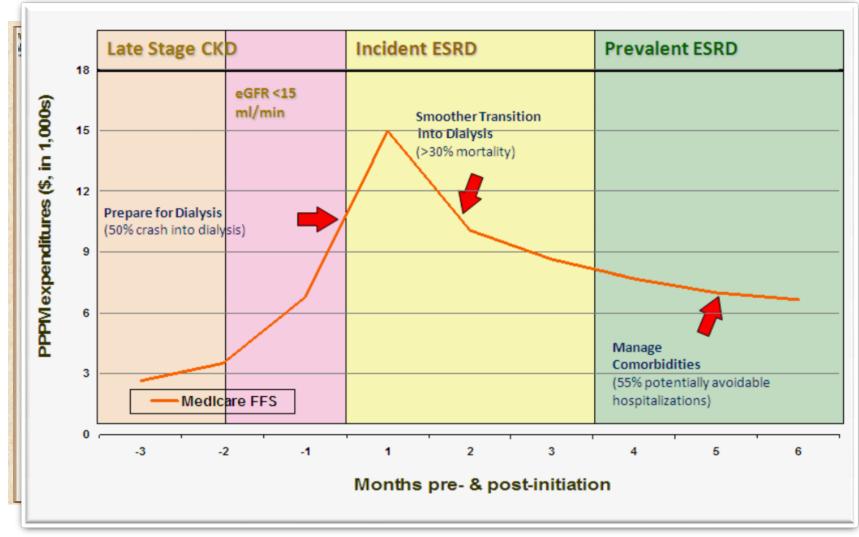
Distribution of Costs General Medicare Population CKD and ESRD


•ESRD Program costs \$32 Billion a year
•\$85000 pa to keep a patient on dialysis in New England

USRDS ADR 2010

CKD predisposes hospitalized patients to Acute Renal Failure

- CKD increases the risk of AKI seven fold in hospitalized patients.
- In AKI patients with CKD, the hazards for:
 - ESRD 85.0
 - Death 3.1

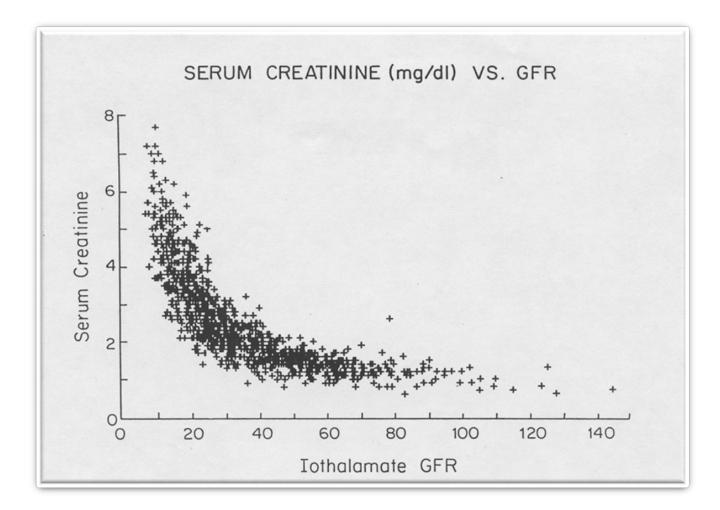

(in AKI patients with no CKD, hazards are 11.7 and 2.5, respectively)

These are the patients who "crash" onto dialysis

USRDS ADR 2009

Costs Associated with Transition to Dialysis

Markers of Renal Disease

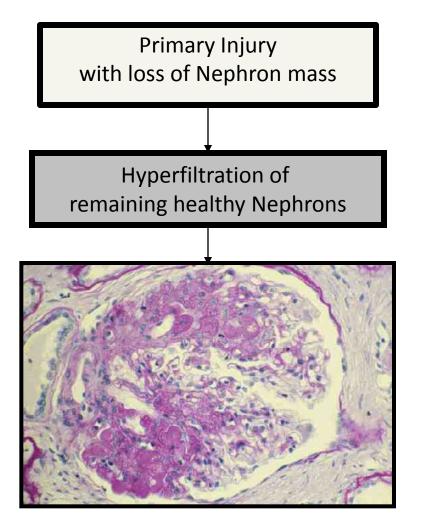

eGFR

- MDRD Equation
- CKD Epi Equation
- If eGFR <60ml/min repeat within 14 days
- Review creatinine trend and repeat eGFRs over time to evaluate progression
- Automated reporting has lead to increased referrals to Nephrology

Proteinuria

- 24-hour urine not necessary
- "Spot" urine Protein (or Albumin) to Creatinine ratio recommended
- Microalbuminuria
 - 30-300mg per 24 hrs
 - Not detectable by dipstix
 - Marker of incipient renal disease
- Proteinuria
 - 300mg to 3.5grams per 24 hrs
 - Marker of overt renal disease

Markers of Renal Disease

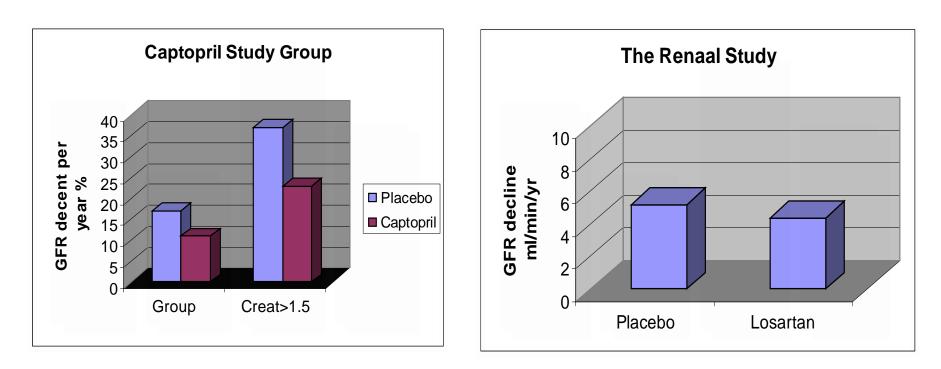

Strategies for Caring with Patients with CKD 4

- Delay
 Progression
 - ACE Inhibition
 - Manage
 metabolic
 abnormalities
 - Minimize AKI risk
 - Review dietary options

- Manage
 Comorbids
 - Cardiovascular risk
 - Anemia
 management
 - Metabolic Bone
 Disease
 Management

- Prepare for ESRD
 - Isolate high risk populations
 - Patient
 education
 - Refer to
 Nephrology
 - Prepare for angioaccess
 - Review Medical
 Management
 options

Angiotensin II effects in CKD

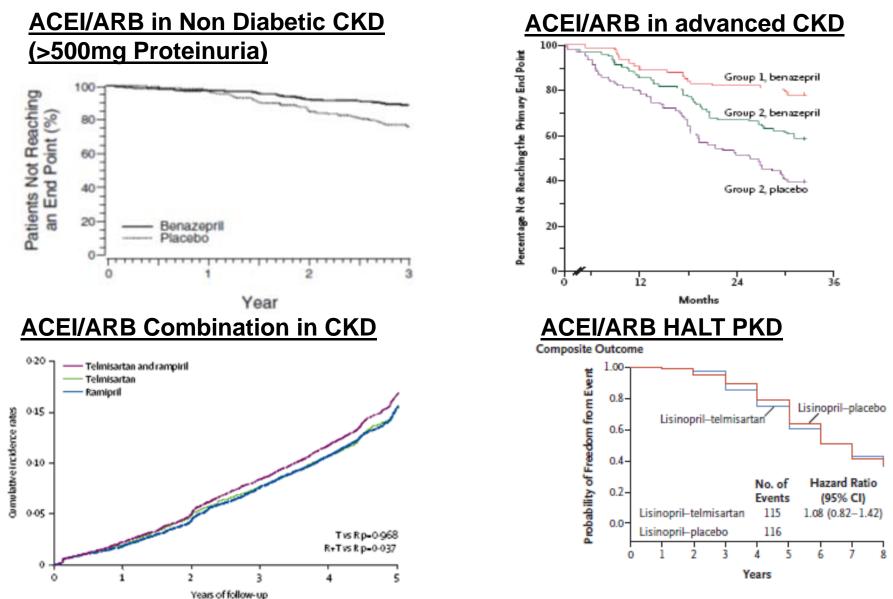


Secondary Focal Segmental Glomerulosclerosis

- Angiotensin II
 - Hemodynamic effects
 - Single nephron increased GFR
 - Increased intraglomerular pressure
 - Non Hemodynamic effects
 - Inflammation and oxidative stress
 - Cellular hypertrophy and proliferation

Decline in GFR: ACEI and ARB use in Type 1 and Type 2 Diabetics

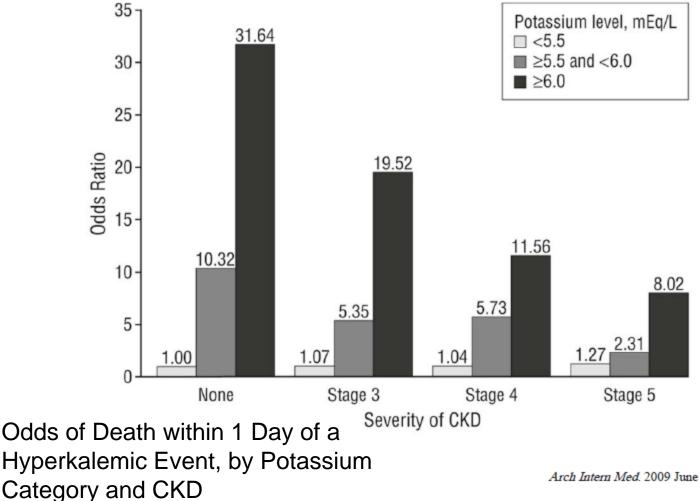
Lewis et al NEJM 329(20), 1993 Brenner et al NEJM 345(12), 2001



Reduction in risk of doubling serum creatinine

- •Captopril Study (Lewis) 48%
- •Renaal Study (Brenner) 25%

ACEI and ARB Use in CKD


N Engl J Med 2014;371:2267-76. N Engl J Med 1996;334:939-45. Hou et al N Engl J Med 2006;354:131-40. JFE Mann et al. Lancet 2008; 372: 547–53

. .

The frequency of hyperkalemia and its significance in chronic kidney disease

Lisa M. Einhorn, BS¹, Min Zhan, PhD², Van Doren Hsu, PharmD³, Lori D. Walker, BS³, Maureen F. Moen, BS¹, Stephen L. Seliger, MD^{1,2}, Matthew R. Weir, MD¹, and Jeffrey C. Fink, MD^{1,2}

Arch Intern Med. 2009 June 22; 169(12): 1156-1162.

HyperKalemia Treatment

ZS-9 sodium zirconium cyclosilicate

- Exchanges Na for K
- HARMONIZE Trial and Phase 3 study report efficacy vs Placebo
- Increased edema
- Long term and efficacy
 vs Kayexalate may need
 to be studied

Patiromer

- Nonabsorbed polymer that binds potassium in exchange for calcium
- OPAL-HK trial studied mild (mean K 5.3) and moderate-to-severe (mean K 5.7) hyperK
- Study showed efficacy in both groups

JAMA. 2014;312(21):2223-2233 NEJM. Dec 2014

NEJM Nov 2014

Stages of Chronic Kidney Disease and levels in the US population based on third NHANES Study

Stage	GFR (ml/min/1.73m ²)	% of Population	No. of Pts
1	>90	1.0-2.0	3.0 – 3.9m
	<u> </u>	2025	<u>(070m</u>
2	60–89	2.0-3.5	6.0-7.0m
3a	45-59	5.0-6.0	15.5m
3b	30-44		(3a-12.4m; 3b-3.1m)
4	15-29	0.2-0.3	0.7m
5	<15 or dialysis	0.2-0.3	0.6m

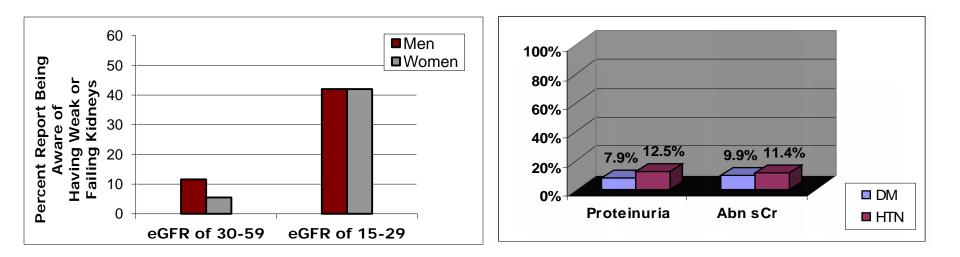
~ 17(+/- 1)m people with GFR less than 60ml/min

NKF KDOQI Guidelines

Andrew S. Levey, MD; Josef Coresh, MD, PhD; et al July 2003 Ann Int Med Vol 139. No. 2

Kidney Disease Improving Global Outcomes (KDIGO): Current CKD Nomenclature

<u>Albuminia defines</u> additional risk over and above eGFR reduction in CKD		Persistent albuminuria categories Description and range				
		A1	A2	Аз		
		Normal to mildly increased	Moderately increased	Severely increased		
				<30 mg/g <3 mg/mmol	30-300 mg/g 3-30 mg/mmol	>300 mg/g >30 mg/mmol
m ²)	G1	Normal or high	≥90			
categories (ml/min/ 1.73 m ²) Description and range	G2	Mildly decreased	60-89			
ml/min/ 1.7 and range	G3a	Mildly to moderately decreased	45-59			
ategories (G3b	Moderately to severely decreased	30-44			
	G4	Severely decreased	15-29			
GFR	G5	Kidney failure	<15			


Green: low risk (if no other markers of kidney disease, no CKD); Yellow: moderately increased risk; Orange: high risk; Red, very high risk.

Patient and Physician Awareness of CKD

Patients are frequently unaware of impairments in Kidney function

Renal disease is infrequently documented even among high risk groups

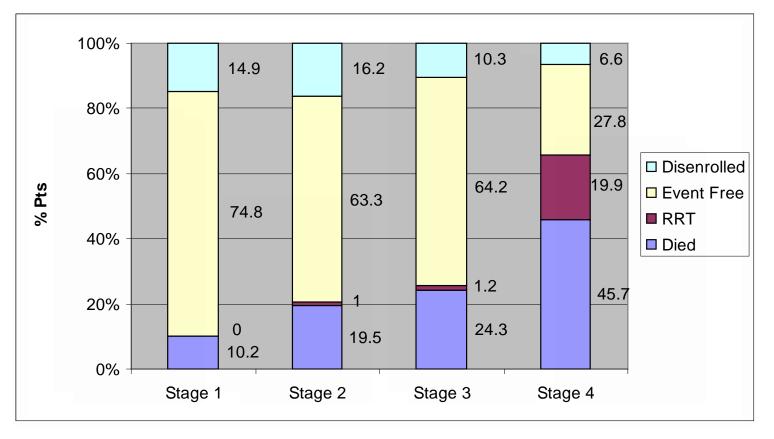
Screening of 587 Medicare hospitalized patients <75yrs without h/o renal disease

Diet and Lifestyle

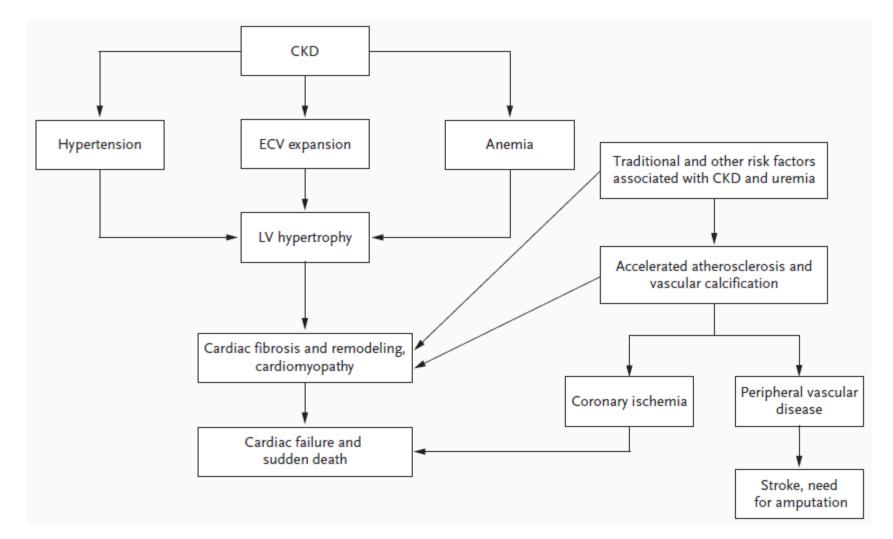
<u>Diet</u>

- CKD patients should receive expert dietary advice if available
- Lower protein intake to 0.8 g/kg/day in patients with GFR <30 ml/min
- Avoid high protein intake (>1.3 g/kg/day) in adults with CKD at risk of progression.
- Target HbA1c of <7.0% (extended above 7.0% in individuals with comorbidities or limited life expectancy and risk of hypoglycemia)
- Lower salt intake to <2 g per day of sodium

Lifestyle


- Undertake physical activity
 30 minutes 5 times per week
- Achieve a healthy weight
 BMI 20 to 25
- Stop smoking
- Avoid NSAID's

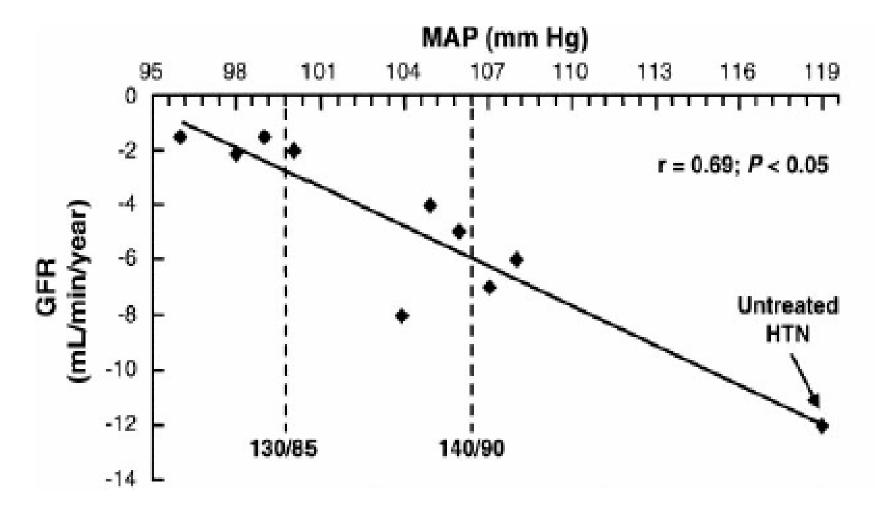
Indications for referral to a Nephrologist for patients with CKD


- Stage 4 and 5 (with or without diabetes); eGFR < 30ml/min
- Higher levels of proteinuria: urinary protein excretion ≥1 g/24 h); Proteinuria together with hematuria
- A rapidly declining estimated glomerular filtration rate (>5 ml/min/1.73 m2 in one year or >10 ml/min/1.73 m2 within five years)
- GFR<60ml/min and difficult to control hypertension
- Suspected or rare or genetic causes of chronic kidney disease (eg: Polycystic disease)

Longitudinal Follow-up and Outcomes Among a Population With Chronic Kidney Disease in a Large Managed Care Organization

27998 patients identified with GFR < 90ml/min and followed for 5 years

Cardiovascular Disease in Patients with Chronic Kidney Disease



Abboud H and Henrich W. N Engl J Med 2010;362:56-65.

Statins and Chronic Kidney Disease

<u>Study</u>	Description	<u>Results</u>	
4D: NEJM, 2006	1255 subjects with type 2 Diabetes on hemodialysis randomly assigned to atorvastatin 20 mg qd or placebo.	LDL reduced by 42%; no statistically significant effect on cardiovascular death, nonfatal myocardial infarction, and stroke	
AURORA NEJM, 2008	2776 patients at high cardiovascular risk, 50 to 80 years of age, on hemodialysis randomly to rosuvastatin, 10 mg daily, or placebo	on statistically significant effect on cardiovascular death, nonfatal	
Meta- analysis BMJ. 2008 Mar 22;336(7645):6 45-51	53 studies: randomised and quasi randomised controlled trials of statins compared to placebo or with other statins in CKD	Statins significantly reduced Total Cholesterol and LDL and proteinuria; reduced non fatal and fatal CV events; no impact on all cause mortality; no impact on GFR	
Sharp Study Lancet. 2011 Jun25;377(97 84):2181-92	RCT: 9270 patients with CKD (3023 on dialysis and 6247 not) with no known history of myocardial infarction or coronary revascularisation; compared simvastatin plus ezetimibe to placebo	Non-significantly fewer patients allocated to simvastatin plus ezetimibe had a non-fatal myocardial infarction or died from coronary heart disease	

Benefits of Treating Hypertension and CKD

Bakris GL et.al.Am J Kidney Dis, Sept. 2000

Management of HTN

<u>JNC 8:</u>

- In the general population aged ≥60 years
 - Treat BP > 150/90
- In the general population <60 years
 - Treat BP > 140/90
- In the population aged ≥18 years with CKD
 - Treat BP > 140/90 and use
 ACEI or ARB

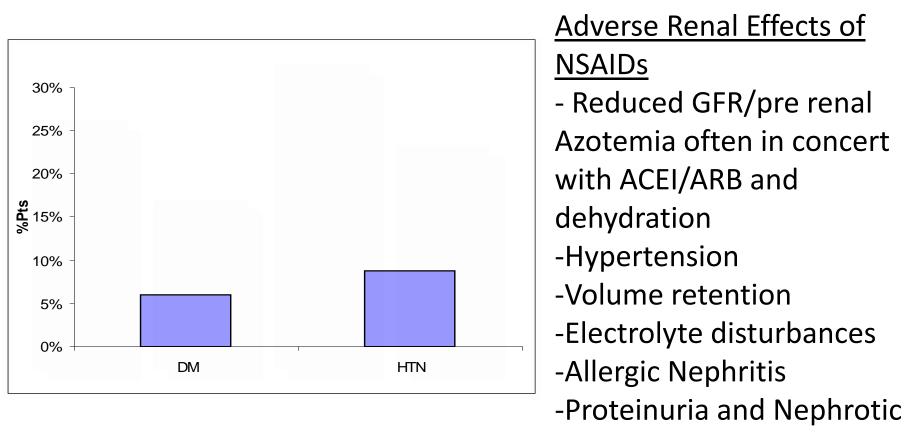
KDIGO Guidelines:

- In diabetic and nondiabetic adults with CKD and with urine albumin excretion of >30 mg/24 hours
 - Treat BP >130/80 and use ACEI/ARB

(2D level of evidence)

Avoiding Nephrotoxin Injury: Contrast and Phosphate Nephropathy

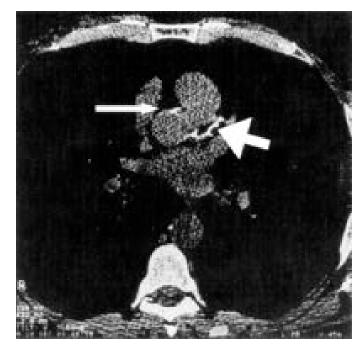
<u>Iodinated Contrast</u> <u>Studies</u>	<u>Gadolinium-based</u> <u>contrast studies</u>	Bowel preparation
 Avoid high osmolar agents Use lowest possible contrast dose compatible with complete study Withdraw potentially nephrotoxic agents before and after the procedure Give adequate hydration with saline before, during, and after the procedure Measure GFR 48–96 hours after the procedure 	 Do not use gadolinium in Pts with GFR <15 ml/min/1.73 m2 (unless there is no alternative appropriate test) For pts with a GFR <30 ml/min use a macrocyclic chelate preparation 	Avoid oral phosphate- containing bowel preparations in pts with GFR <60 ml/min due to risk of phosphate nephropathy


Avoiding Nephrotoxin Injury : Lithium Nephropathy

- Lithium salts produce a natriuresis associated with impairment of Na channels in the cortical collecting tubule.
- The most common complication of chronic lithium therapy is nephrogenic diabetes insipidus.

- ~30% of patients have at least one episode of acute lithium toxicity
- Continued debate re incidence and of chronic lithium nephropathy.
 - 15% have GFRs of more than 2 standard deviations below the age-corrected normal values

Avoiding Nephrotoxin Injury : NSAID Associated Renal Injury


587 Medicare pts <75 years with documented renal disease

McClellan, AJKD 1997,29:368

Vascular Biology is abnormal in CKD. Coronary-Artery Calcification in Young Adults with End-Stage Renal Disease Undergoing Dialysis

(N Engl J Med 2000;342:1478-83. AIN May 1998 Vol 128:10; 839-847)

Sample electron-beam computed tomographic scan showing calcification of the left anterior descending coronary artery (thick arrow) and the aortic root (thin arrow).

- Coronary-artery calcification is common and progressive in young adults with end-stage renal disease who are undergoing dialysis.
- 2. The mean serum phosphorus, the mean calcium-phosphorus ion product, and the daily intake of calcium were higher among the patients with coronary-artery calcification

Mineral Metabolism in CKD

- Measure serum calcium and phosphate if eGFR < 45ml/min
- Maintain phosphate in normal range
 - Restrict dietary phosphate intake
 - Use phosphate binders when indicated
- When vitamin D supplementation is indicated offer:
 - 25 OH Vit D to people with eGFR > 30 ml/min
- Use calcitriol (1,25 Vit D analogue) in patients with GFR < 30 ml/min and
 - PTH > 70ng/L in CKD 3
 - PTH > 120ng/L in CKD 4
- Offer bisphosphonates for the prevention and treatment of osteoporosis in
 - people with eGFR > 30 ml/min on the same indications as for all other patients

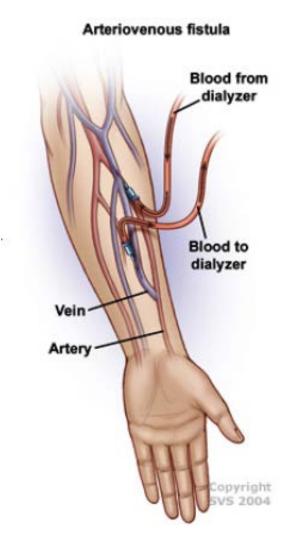
Studies of Anemia Management and the use of Erythropoetin in CKD

Normal Hct Study Besarab A et al. N Engl J Med 1998;339:584-590	183 deaths and 19 non fatal MI's in nl-Hct group and 150 deaths and 14 non fatal MI's in low-Hct group (RR 1.3; 95% CI, 0.9 to 1.9). Study halted.	Pts in nl-Hct group had a decline in the adequacy of dialysis and received more IV iron dextran.
CHOIR Study Ajay Singh et al. N Engl J Med 2006;355:2085-98.	125 events (Death, MI, CHF, Stroke) in the high-Hb group vsImprovements in the q of life were similar in the two groups.97 events in the low-Hb group (HR, 1.34; 95% Cl, 1.03 to 1.74; P = 0.03).two groups.	
CREATE Study Drueke et al N Engl J Med 2006;355:2071-84	No effect on first cardiovascular event	General health and physical function improved significantly (P = 0.003 and P<0.001) in high Hb group.
TREAT Study Marc Pfeffer et al N Engl J Med 2009;361:2019-32	Death or a cardiovascular event in 632 pts in Rx group vs 602 pts in placebo group (P = 0.41)	Fatal or nonfatal stroke in 101 pts in Rx grp vs 53 in placebo group (P<0.001).

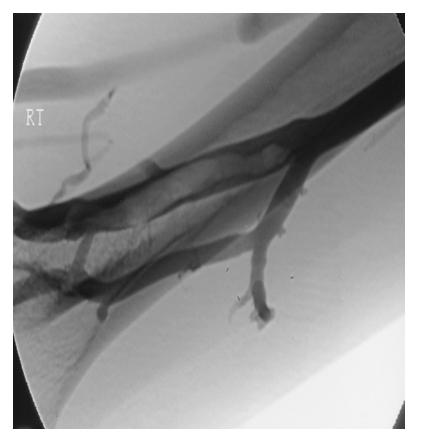
Anemia Management

- Check hemoglobin in people with eGFR < 45 ml/min
- Exclude other causes of anemia before attributing to CKD
- If the patient is likely to benefit in terms of quality of life, consider referral for ESA candidacy if Hb < 9g/dl

Preparation for ESRD Vascular Access Placement: Fistula First Program


Mortality Risk by Type of Vascular Access

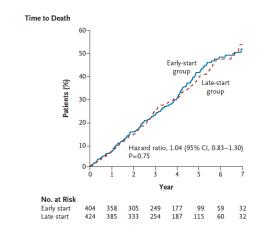
	<u>Relative Risk</u> of death	<u>P value</u>
Diabetics:		
AVF	1.00	
PTFE	1.39	0.0004
Catheter	1.49	0.0004
Non-Diabetics:		
AVF	1.00	
PTFE	1.09	0.26
Catheter	1.72	0.0001


Dhingra et al; KI 2000

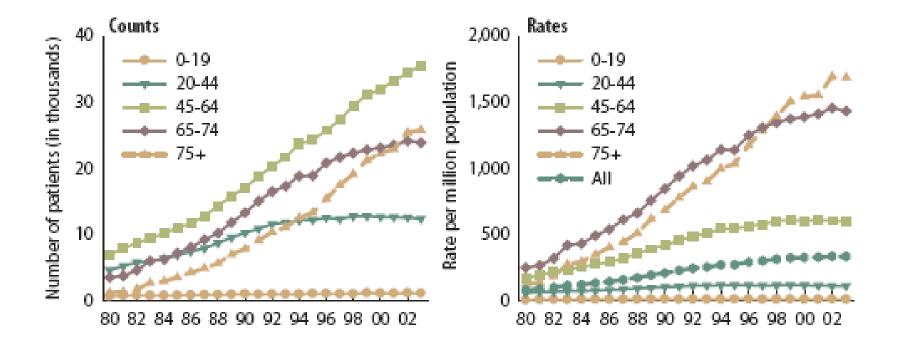
- 1. 80% of patients initiating dialysis do so via catheter
- CMS FistulaFirst program targets 66% fistula rate for patients > 90 days on dialysis
- 3. Current Rate is 54.7%
- 4. Best practices encouraged
 - I. Patient education
 - II. Vein preservation

Preparation for ESRD Vascular Access Placement: Fistula First Program

Thrombosis following PICC placement

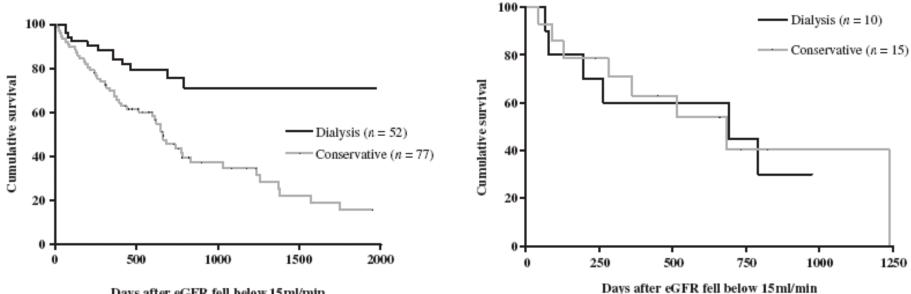

Figure 1. A 38-year-old asymptomatic woman 1 day after PICC placement with inadvertent removal. Venography demonstrates nonocclusive thrombus in a brachial vein

- Identify CKD stages 3,4 or 5, including current hemodialysis, peritoneal dialysis or transplant patients as a special population when planning central venous access
- Plan appropriate venous access in these cases
 - dorsal hand veins for phlebotomy
 - internal jugular veins are preferred for central venous access
 - external jugular veins are acceptable alternative
 - Avoid any catheters in subclavian veins


Initiation of ESRD Care

- Consider dialysis initiation when one or more of following is present
 - symptoms or signs attributable to kidney failure (serositis, acid-base or electrolyte abnormalities, pruritus);
 - inability to control volume status or blood pressure;
 - progressive deterioration in nutritional status refractory to dietary intervention;
 - cognitive impairment.
- Often occurs in the GFR range between 5 and 10 ml/min

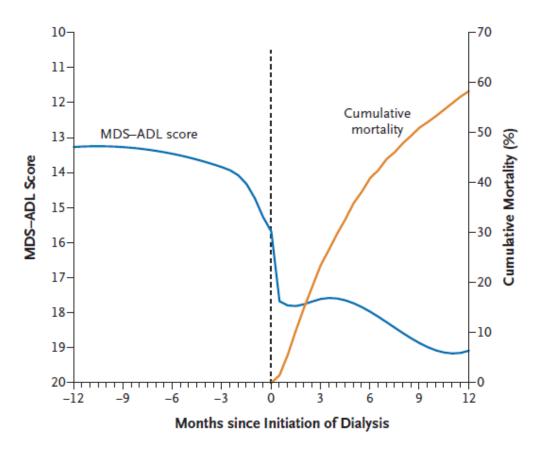
- Consider Living donor preemptive renal transplantation when GFR is <20 ml/min and
 - evidence of progressive
 - and irreversible CKD over the preceding 6–12 months.



ESRD incident counts and adjusted rates by age. - the ageing of the dialysis population

USRDS 2005

A comparative survival study of patients over 75 years with chronic kidney disease stage 5



Days after eGFR fell below 15ml/min

Kaplan–Meier survival curves comparing the dialysis and conservative groups (P<0.001). Kaplan–Meier survival curves for those with high comorbidity (score>2), comparing dialysis and conservative groups

Murtagh et al Nephrol Dial Transplant (2007)

Functional Status of Elderly Adults before and after Initiation of Dialysis

- •3702 nursing home residents in the United States
- •Initiated dialysis dialysis between June 1998 and October 2000.
- •At least one measurement of functional status was available before dialysis.
- •Functional status was measured by assessing the degree of dependence in seven ADL's (on the Minimum Data Set–Activities of Daily Living [MDS–ADL] scale of 0 to 28 points, with higher scores indicating greater functional difficulty).

Conservative Management of Stage V CKD

- Conservative management should be an option
- It should be supported by a comprehensive management program.
- It should be available to people and families through either primary care or specialist care as local circumstances dictate.

- The comprehensive conservative management program should include:
 - protocols for symptom and pain management,
 - psychological care, spiritual care
 - culturally sensitive care for the dying patient and their family (whether at home, in a hospice or a hospital setting)
 - provision of culturally appropriate bereavement support.

Conclusions

- Kidney Disease is common in both the inpatient and outpatient settings
- Acute Renal Failure in hospitalized patients is associated with high mortality rates in those requiring replacement therapy
- The majority of patients with CKD have non progressive disease
- Cardiovascular disease is a major co-morbidity
- For patients with progressive CKD care strategies should be initiated early to improve long term morbidity and mortality
- A team approach is required
- Pre-planning for renal replacement therapies is necessary in those with progressive disease