

A Teaching Affiliate of Harvard Medical School

Lung Cancer 2022

Ibiayi Dagogo-Jack, MD MGH Center for Thoracic Cancers

Disclosures

<u>Consulting/Honoraria</u>: Creative Education Concepts, OncLive, ASCO Post, DAVA Oncology, Medscape, Total Health, and American Lung Association, consulting fees from AstraZeneca, Bayer, BostonGene, Catalyst, Genentech, Janssen, Novocure, Pfizer, Regeneron, Sanofi/Genzyme, Syros, and Xcovery

Research Support/Grants: Genentech, Pfizer, Novartis

Learning Objectives

- 1. Review updated guidelines for lung cancer screening
- 2. Discuss management strategies for early-stage (stage I-III) lung cancer
- 3. Review the evolving paradigm for management of metastatic lung cancer

Lung Cancer by the Numbers

- 236,640 new cases of lung cancer in 2022
- 130,180 deaths in the U.S in 2022
- Leading cause of cancerrelated mortality
- 10-15% of NSCLCs occur in never/minimal smokers

			Males	Females		
Prostate	268,490	27%		Breast	287,850	31%
Lung & bronchus	117,910	12%		Lung & bronchus	118,830	13%
Colon & rectum	80,690	8%		Colon & rectum	70,340	8%
Urinary bladder	61,700	6%		Uterine corpus	65,950	7%
Melanoma of the skin	57,180	6%		Melanoma of the skin	42,600	5%
Kidney & renal pelvis	50,290	5%		Non-Hodgkin lymphoma	36,350	4%
Non-Hodgkin lymphoma	44,120	4%		Thyroid	31,940	3%
Oral cavity & pharynx	38,700	4%		Pancreas	29,240	3%
Leukemia	35,810	4%		Kidney & renal pelvis	28,710	3%
Pancreas	32,970	3%		Leukemia	24,840	3%
All Sites	983,160	100%		All Sites	934,870	100%

			Males	Females
Lung & bronchus	68,820	21%		Lung & bronchus 61,360 21%
Prostate	34,500	11%	17	Breast 43,250 15%
Colon & rectum	28,400	9%		Colon & rectum 24,180 8%
Pancreas	25,970	8%		Pancreas 23,860 8%
Liver & intrahepatic bile duct	20,420	6%		Ovary 12,810 4%
Leukemia	14,020	4%		Uterine corpus 12,550 4%
Esophagus	13,250	4%		Liver & intrahepatic bile duct 10,100 4%
Urinary bladder	12,120	4%		Leukemia 9,980 3%
Non-Hodgkin lymphoma	11,700	4%		Non-Hodgkin lymphoma 8,550 3%
Brain & other nervous system	10,710	3%		Brain & other nervous system 7,570 3%
All Sites	322,090	100%	_	All Sites 287,270 100%

Overall Survival By Pathologic Stage

Fewer than 5% of patients with stage IV NSCLC survive \geq 5 years

Chansky et al J Thorac Oncol 2017

Lung Cancer Screening

Which of the following patients would not be eligible for lung cancer screening with a LDCT per the revised CMS coverage criteria (February 2022)?

- A) 75-year-old, current smoker
- B) 60-year-old, former smoker (25 pack year, quit 2000)
- C) 51-year-old, former smoker (20 pack year, quit 2010)
- D) 78-year-old, current smoker, with prior lung cancer
- E) B & D

Low-Dose CT Screening

ame esign		er ted	Characteristics of Participants				Irted Date	ie Rate T)	ncer at lortality tion	
Trial Ne Study Do	Numb Recrui	Age	Sex	Smoker (Pack yrs)	Ex-Smoker (yrs)	Year Sta	Report	LC Baselir (LDC	Stage I Ca Baseline/A Reduc	
NLST	LDCT vs. CXR	53,454	55-74	M/F	≥30	<15	2002	2011	1%	63% / 20%
NELSON	LDCT vs. UC	15,822	50-75	M/F	≥15	<10	2003	2016	0.9%	63.9%
MILD	LDCT vs. UC	4,099	≥49	M/F	>20	<10	2005	2011	0.6%	63%
DANTE	LDCT vs. UC	2,811	60-74	М	≥20	<10	2001	2007	2.2%	57%
DEPISCAN	LDCT vs. CXR	765	50-75	M/F	≥15	<15	2002	2006	2.4%	0.9%
ITALUNG	LDCT vs. UC	3,206	55-69	M/F	≥20	<10	2004	N/A	1.5%	47.6%
DLCST	LDCT vs. UC	4,104	50-70	M/F	≥20	<10	2004	2016	0.8%	58.8%
LUSI	LDCT vs. CXR	4,052	50-69	M/F	>15	<10	2007	2012	1.1%	78.2%
UKLS	LDCT vs. UC	32,000 planned	50-75	M/F	N/A	N/A	2012	N/A	N/A	N/A

- LDCT = Low-Dose Computed Tomography; CXR = Chest Radiograph; LC = Lung Cancer; UC = Usual Care
- Fintelmann et al., 2015, deKoning et al., NEJM 2020

- Multiple randomized trials have compared the impact of LDCT screening vs. usual care on lung cancer-specific and overall mortality
 - 5 trials: usual care arm was no screening
 - 3 trials: usual care arm was CXR (including NLST trial)
 - NELSON (2020 Update):
 - ~13,000 men and 3,000 women
 - Randomized to no screening vs CT at baseline, Y1, Y3, Y5.5
 - At 10 years: 24% and 33% reduction in lung cancer related mortality in men and women, respectively

Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening

The National Lung Screening Trial Research Team*

Criteria for Participation in National Lung Screening Trial (NLST)

- Eligibility criteria:
 - 55-74 years old, no signs or symptoms of lung cancer
 - Active or former smoker with a 30-pack year history
 - If a former smoker, must have quit within 15 years
- Exclusions:
 - Prior history of lung cancer, hemoptysis
- Compared low-dose (LDCT) yearly (baseline, 1 year, 2 years) to CXR

CT screening of smokers and former smokers saves lives and is cost-effective

- 20% reduction in lung cancer specific mortality
- 7% reduction in all cause mortality
- One study estimates <u>\$4.4 billion</u> in US healthcare costs added by LDCT screening for a population of <u>18 million</u> individuals age 50-64 years and a minimum smoking history of at least 30 pack-years.¹
- Despite being costly, LDCT could save <u>18,000 lives</u> annually, at an average cost of \$170,500 per life saved (2012 US dollars).¹
- Cost effectiveness analysis based on the NLST population estimates \$81K per QALY gained and \$52K per life-year gained. (Both less than \$100K)²

CMS Decision (Dates Back to 2015)

- <u>CMS will cover lung screening CTs</u>
- Age 55-77
- Asymptomatic
- At least 30 pack-year history
- Current smoker or quit within 15 years
- First screen must have a lung screening/shared decisionmaking visit prior to order
- Shared decision-making, including decision-aid
- Counseling on importance of abstinence from smoking or smoking cessation
- Counseling on importance of adherence to screening

CMS Decision (Updated February 2022)

- <u>CMS will cover lung screening CTs</u>
- Age 50-77
- Asymptomatic
- At least 20 pack-year history
- Current smoker or quit within 15 years
- First screen must have a lung screening/shared decisionmaking visit prior to order
- Shared decision-making aid must be used
- Counseling on importance of abstinence from smoking or smoking cessation
- Counseling on importance of adherence to screening

Lung-RADS

LungRADS Category	Abbreviated Nodule Description	Recommended Follow- Up Scan Interval	Prevalence Among Screened Population	Likelihood of Being Lung Cancer
1	Normal CT scan, no nodules	1 year		
2	Nodule < 6mm or unchanged over time; benign-appearing	1 year	90%	< 1%
3	Nodule ≥6mm	6 months	5%	1-2%
4A	\geq 8mm or growing over time	3 months	2%	5-15%
4B	≥ 15 mm or ≥ 8 mm and growing	Immediate work-up	2%	>15%

https://www.acr.org/Quality-Safety/Resources/LungRADS

MGH Lung Screening/Pulmonary Nodule Clinic Workflow

Pre-Visit

- RN or Navigator collects focused history, gathers images, and communicates with referring MD
- Multidisciplinary team reviews images, decides which MDs will see patient at first appointment

Initial Appointment

- Designated MDs see
 patient
- Images reviewed with patient
- Tobacco cessation
 offered
- Recommended studies and procedures planned

Follow-up

- Navigator ensures scan follow-up & scheduling of procedures
- Patients are scheduled at PNLCSC for follow-up visits
- Patients with no procedures planned are seen by clinic NP

Discharge

- <u>Criteria</u>: No further scans required, >2 years of stability, appropriate procedure(s) planned
- Discharge is documented in medical record & letters are sent to referring MD

Referrals come from PCPs, pulmonology, specialists, radiology, patient self-referral

Early Stage (Localized) Lung Cancer

Case Presentation

- 60-year-old male, current smoking history (35 pack year) presents to his primary care doctor for annual visit.
- He is asymptomatic.
- It is recommended that he undergo a low-dose chest CT for lung cancer screening.
- A nodule is detected.
- No other imaging abnormality
- Biopsy: lung adenocarcinoma

Surgical Management of Localized Lung Cancer

- Surgery backbone of therapy for localized NSCLC
- Type of Resections
 - Anatomic Resections: Pneumonectomy, Segmentectomy, and Lobectomy
 - Non-anatomic Resections: Wedge Resection
- The gold standard for operable patients is an anatomic resection, ideally lobectomy or segmentectomy

Adjuvant Therapy: How it Started (Chemo)

NEJM 2005; 352: 2589-97

5% improvement in survival at 5 years

Adjuvant Therapy: How It's Going (2022)

Markedly improved disease-free survival with targeted therapy + chemo for EGFR+ NSCLC

Improved disease-free survival with immunotherapy + chemo for PD-L1+ stage II-III NSCLC

Wu et al NEJM 2020

Case Presentation

- 70-year-old with active smoking history, coronary artery disease, congestive heart failure, and severe COPD. She has a baseline 2-3L supplemental O2 requirement.
- A screening CT scan demonstrates a 1.5 cm LUL nodule. The nodule persists on short interval follow-up imaging. The nodule is FDG avid on PET scan. Biopsy is not possible due to risk.

Which of the following is the most appropriate approach to management of this patient?

A) Referral to hospice

B) Referral to thoracic surgery for resection

C) Repeat CT scan in 6 months

D) Referral to radiation oncology for radiation therapy

Role of radiation therapy in the management of earlystage NSCLC

- 20-25% of NSCLC patients have stage I disease
- 20-30% of patients are medically inoperable

Operable

Anatomical resection
 -lobectomy
 -segmentecomy
 -pneumonectomy

Medically inoperable

- Radiation
- IR ablative options (e.g., cryotherapy)

High-risk operable

- Wedge resection
- Radiation
- IR ablative options

Stereotactic Body Radiation Therapy (SBRT)

- SBRT has emerged as the standard treatment for medically inoperable patients with early-stage NSCLC up to ~ 5 cm in size
- Treatment consists typically of 3-5 fractions delivering a total dose of 45-60 Gy with various techniques available
- Local tumor control is 90-95% at 5 years, and nodal failures are in the range of 5-15% depending on tumor size and other factors
- Toxicity is uncommon, even for central and chest wall-based tumors, with typically no or mild, self-limited acute side effects and a generally <10% risk of serious late toxicity
- Areas of investigation/controversy: SBRT without biopsy, role in high-risk operable patients
- SBRT for operable patients remains investigational

Locally-Advanced (Stage III), Inoperable Lung Cancer

Case Presentation

- 74-year-old who quit smoking 5 years ago presents with persistent cough and 10 lbs unintentional weight loss.
- CT scan demonstrates a 4 cm mass in the right lung, as well as enlarged lymph nodes involving the bilateral hilar and mediastinal stations.
- PET scan reveals uptake in the lung mass and multiple lymph node stations. No extrathoracic FDG uptake. Brain MRI is unrevealing.
- Bronchoscopy with biopsy of lymph nodes confirms lung adenocarcinoma involving lymph nodes from both sides of the chest (stage IIIC).

Management of Inoperable Stage III NSCLC

- Multimodality treatment is ideal.
- Treatment involves 6 weeks of chemo delivered with daily radiation
- Then, patients receive 1 year of immunotherapy (durvalumab).

Spigel et al Journal of Clinical Oncology 2022

Metastatic Lung Cancer

Which of the following is not a standard component of first-line treatment of metastatic lung cancer?

- A) Palliative radiation
- **B)** Surgical Resection
- C) Chemotherapy
- D) Immunotherapy
- E) Targeted Therapy

Breakdown by Histology

Historical Paradigm: Platinum Doublet Chemo

Care of Metastatic Lung Cancer Has Been Revolutionized by Two Types of Therapy in Recent Years

Targeted Therapy

Most patients who are eligible for approved first-line targeted therapies have minimal tobacco exposure.

Immunotherapy

Shifting Paradigm for First-Line Treatment of NSCLC

Improved Understanding of the Biology of Lung Cancer

SqCC Adeno LCC-NOS SCLC

Improved Understanding of the Biology of Lung Cancer

FDA-Approved Targeted Therapies for Stage IV Lung Cancer

EGFR mutation	Erlotinib, Gefitinib, Afatinib, Dacomitinib, Osimertinib, Amivantamab (exon 20 insertion)
ALK rearrangement	Crizotinib, Ceritinib, Alectinib, Brigatinib, Lorlatinib
ROS1 Fusion	Crizotinib, Entrectinib
BRAF V600E	Dabrafenib + Trametinib
MET exon 14 skipping	Capmatinib, Tepotinib
RET rearrangement	Selpercatinib, Pralsetinib
	CANCER CENTER

Impact of Targeted Therapies in NSCLC

EGFR-Mutant NSCLC

ALK-Positive NSCLC

Rosell R, et al. Lancet Oncol 2012; Kwak et al., NEJM 2010

Central Premise of Immunotherapy

Cancer cells possess genetic alterations that may generate neoantigens, which may be recognized by the immune system.

Immune Checkpoints

PD-L1 Testing is Mandatory for all Metastatic NSCLCs

PD-L1 immunohistochemistry is an important component of management of stage 4 NSCLC

Immunotherapy in the First-Line Setting

KEYNOTE-024 Study Design (NCT02142738)

Key End Points

Primary: PFS (RECIST v1.1 per blinded, independent central review)

Secondary: OS, ORR, safety

Exploratory: DOR

Immunotherapy Alone in the First-Line Setting: PD-L1 High

Progression-Free Survival

Overall Survival

Reck M, et al. NEJM 2016

Immunotherapy + Chemo in the First-Line Setting: All-Comers

Key Eligibility Criteria

- Untreated stage IV nonsquamous NSCLC
- No sensitizing *EGFR* or *ALK* alteration
- ECOG PS 0 or 1
- Provision of a sample for PD-L1 assessment
- No symptomatic brain metastases
- No pneumonitis requiring systemic steroids

Stratification Factors

- PD-L1 expression (TPS^a <1% vs ≥1%)
- Platinum (cisplatin vs carboplatin)
- Smoking history (never vs former/current)

Chemotherapy + Immunotherapy in the First-Line Setting

Progression-Free Survival

Overall Survival

Immune-Mediated Toxicities

MA Postow et al. N Engl J Med 2018;378:158-168.

Metastatic NSCLC Prognosis

	No Chemo	Platinum Doublet	<i>EGFR-</i> Mutant on TKI	<i>ALK-</i> rearranged on TKI	PDL1-high 1 st line pembrolizumab
Median Survival (months)	6 mo	~1 year	>3 years	> 5 years	26 months 32% alive at 5 yrs
1-year (%)	10%	40%	80 + %	80 + %	70%
ORR	0%	25-30%	70+%	70+%	>45%

NSCLC Meta-Analyses. JCO. 2008;26:4617-4625; Scagliotti GV. JCO. 2008;26:3543-3551; Mok TS et al. *NEJM.* 2009;361:947-957; Mok TS et al. *NEJM.* 2017;376(7):629-640; Shaw AT. *Lancet Onc.* 2012;12:1004-1012; Shaw AT. *Lancet Onc.* 2016 Feb; 17(2): 234–242; Reck M. JCO.2021.

NSCLC Prognosis: The Tail of the Curve

Paul, a 60-something year old with metastatic NSCLC

- Diagnosed with metastatic NSCLC with brain metastases and pericardial tamponade in 2014
- 2014: Received his first targeted therapy
- 2015: Received his second targeted therapy
- 2016: Started his third targeted therapy
- 2022: He continues to respond to his third targeted therapy
- Since I've known him, he has welcomed three grandchildren.

Peggy, a 70 something year old with metastatic NSCLC

- Peggy has been on dialysis for several years
- 2017: Diagnosed with NSCLC metastatic to the brain
- She underwent resection of the brain metastasis and subsequently received radiation
- 2017: She started treatment with pembrolizumab
- 2019: She had a complete response to treatment.
 Pembrolizumab discontinued after 2 years. She is now on surveillance without evidence of recurrence.
- It is possible that Peggy may not need more treatment for her metastatic NSCLC

Summary

- Lung cancer is a prevalent and often fatal disease.
- Lung screening is essential for reducing mortality from lung cancer.
- There are alternatives to surgery for patients with localized lung cancer who have extensive comorbidities.
- Most patients receive 3-36 months of additional therapy after surgery (e.g., chemo, targeted therapy, immuno).
- Novel targeted therapies are improving the survival of patients with metastatic NSCLC, but these therapies are not available for all.
- Immunotherapies have transformed the management of NSCLC and are now the backbone of first-line therapy.

Questions?